Myocyte-specific enhancer factor 2A

Myocyte-specific enhancer factor 2A is a protein that in humans is encoded by the MEF2A gene.[5][6] MEF2A is a transcription factor in the Mef2 family. In humans it is located on chromosome 15q26. Certain mutations in MEF2A cause an autosomal dominant form of coronary artery disease and myocardial infarction.

MEF2A
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesMEF2A, ADCAD1, RSRFC4, RSRFC9, mef2, myocyte enhancer factor 2A
External IDsOMIM: 600660 MGI: 99532 HomoloGene: 4080 GeneCards: MEF2A
Gene location (Human)
Chr.Chromosome 15 (human)[1]
Band15q26.3Start99,565,417 bp[1]
End99,716,466 bp[1]
RNA expression pattern




More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

4205

17258

Ensembl

ENSG00000068305

ENSMUSG00000030557

UniProt

Q02078

Q60929

RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)Chr 15: 99.57 – 99.72 MbChr 7: 67.23 – 67.37 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

The process of differentiation from mesodermal precursor cells to myoblasts has led to the discovery of a variety of tissue-specific factors that regulate muscle gene expression. The myogenic basic helix-loop-helix proteins, including myoD (MIM 159970), myogenin (MIM 159980), MYF5 (MIM 159990), and MRF4 (MIM 159991) are 1 class of identified factors. A second family of DNA binding regulatory proteins is the myocyte-specific enhancer factor-2 (MEF2) family. Each of these proteins binds to the MEF2 target DNA sequence present in the regulatory regions of many, if not all, muscle-specific genes. The MEF2 genes are members of the MADS gene family (named for the yeast mating type-specific transcription factor MCM1, the plant homeotic genes 'agamous' and 'deficiens' and the human serum response factor SRF (MIM 600589)), a family that also includes several homeotic genes and other transcription factors, all of which share a conserved DNA-binding domain.[supplied by OMIM][6]

Interactions

Myocyte-specific enhancer factor 2A has been shown to interact with:

gollark: I chose LEN-236 because that's (some of) what my existing TBU Oxide reactor outputs.
gollark: WIP reactor with 800% efficiency and 5.8kRF/t running on LEN-236.
gollark: So how does your central thingy work?
gollark: Oh, RIGHT. That's annoying.
gollark: I'm going to design a stupidly large reactor with one fuel cell and as much as possible filled with moderators.

References

  1. GRCh38: Ensembl release 89: ENSG00000068305 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000030557 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Yu YT, Breitbart RE, Smoot LB, Lee Y, Mahdavi V, Nadal-Ginard B (October 1992). "Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors". Genes Dev. 6 (9): 1783–98. doi:10.1101/gad.6.9.1783. PMID 1516833.
  6. "Entrez Gene: MEF2A MADS box transcription enhancer factor 2, polypeptide A (myocyte enhancer factor 2A)".
  7. Mao Z, Nadal-Ginard B (June 1996). "Functional and physical interactions between mammalian achaete-scute homolog 1 and myocyte enhancer factor 2A". J. Biol. Chem. 271 (24): 14371–5. doi:10.1074/jbc.271.24.14371. PMID 8662987.
  8. De Luca A, Severino A, De Paolis P, Cottone G, De Luca L, De Falco M, Porcellini A, Volpe M, Condorelli G (February 2003). "p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor". Biochem. J. 369 (Pt 3): 477–84. doi:10.1042/BJ20020057. PMC 1223100. PMID 12371907.
  9. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (September 1999). "HDAC4 deacetylase associates with and represses the MEF2 transcription factor". EMBO J. 18 (18): 5099–107. doi:10.1093/emboj/18.18.5099. PMC 1171580. PMID 10487761.
  10. Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S (May 2000). "mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity". J. Biol. Chem. 275 (20): 15594–9. doi:10.1074/jbc.M908437199. PMID 10748098.
  11. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J (January 1999). "Regulation of the MEF2 family of transcription factors by p38". Mol. Cell. Biol. 19 (1): 21–30. doi:10.1128/mcb.19.1.21. PMC 83862. PMID 9858528.
  12. Yang SH, Galanis A, Sharrocks AD (June 1999). "Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors". Mol. Cell. Biol. 19 (6): 4028–38. doi:10.1128/mcb.19.6.4028. PMC 104362. PMID 10330143.
  13. Ornatsky OI, McDermott JC (October 1996). "MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells". J. Biol. Chem. 271 (40): 24927–33. doi:10.1074/jbc.271.40.24927. PMID 8798771.
  14. Quinn ZA, Yang CC, Wrana JL, McDermott JC (February 2001). "Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins". Nucleic Acids Res. 29 (3): 732–42. doi:10.1093/nar/29.3.732. PMC 30396. PMID 11160896.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.