ID1

DNA-binding protein inhibitor ID-1 is a protein that in humans is encoded by the ID1 gene.[5][6]

ID1
Identifiers
AliasesID1, ID, bHLHb24, inhibitor of DNA binding 1, HLH protein
External IDsOMIM: 600349 MGI: 96396 HomoloGene: 1631 GeneCards: ID1
Gene location (Human)
Chr.Chromosome 20 (human)[1]
Band20q11.21Start31,605,283 bp[1]
End31,606,515 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

3397

15901

Ensembl

ENSG00000125968

ENSMUSG00000042745

UniProt

P41134

P20067
Q6GTZ3

RefSeq (mRNA)

NM_181353
NM_002165

NM_010495
NM_001355113
NM_001369018

RefSeq (protein)

NP_002156
NP_851998

NP_034625
NP_001342042
NP_001355947

Location (UCSC)Chr 20: 31.61 – 31.61 MbChr 2: 152.74 – 152.74 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

The protein encoded by this gene is a helix-loop-helix (HLH) protein that can form heterodimers with members of the basic HLH family of transcription factors.[5] The encoded protein has no DNA binding activity and therefore can inhibit the DNA binding and transcriptional activation ability of basic HLH proteins with which it interacts.[5] This protein may play a role in cell growth, senescence, and differentiation.[7][8][9] Two transcript variants encoding different isoforms have been found for this gene.[10]

Interactions

ID1 has been shown to interact weakly with MyoD[5][11][12][13][14][15][16] but very tightly with ubiquitously expressed E proteins.[17] E proteins heterodimerize with tissue restricted bHLH proteins such as Myod, NeuroD, etc. to form active transcription complexes so by sequestering E proteins, Id proteins can inhibit tissue restricted gene expression in multiple cell lineages using the same biochemical mechanism. Other interacting partners include CASK.[18]

Clinical significance

ID1 can be used to mark endothelial progenitor cells which are critical to tumor growth and angiogenesis.[19][20] Targeting ID1 results in decreased tumor growth.[21][22]

gollark: Current flowing causes magnetic fields. Changing magnetic fields cause voltages. I'm not sure of the exact details of this stuff because the causality is really weird.
gollark: Yes.
gollark: Something something magnetic fields.
gollark: It's possible.
gollark: It's the rate at which charge is flowing, although due to conventional things™ it's in the opposite direction to actual electron movement.

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000125968 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000042745 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990). "The protein Id: a negative regulator of helix-loop-helix DNA binding proteins". Cell. 61 (1): 49–59. doi:10.1016/0092-8674(90)90214-Y. PMID 2156629.
  6. Hara E, Yamaguchi T, Nojima H, Ide T, Campisi J, Okayama H, Oda K (February 1994). "Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts". J Biol Chem. 269 (3): 2139–45. PMID 8294468.
  7. Ruzinova MB, Benezra R (2003). "Id proteins in development, cell cycle and cancer". Trends in Cell Biology. 13 (8): 410–8. doi:10.1016/S0962-8924(03)00147-8. PMID 12888293.
  8. Perk J, Iavarone A, Benezra R (2005). "The Id family of helix-loop-helix proteins in cancer". Nat Rev Cancer. 5 (8): 603–614. doi:10.1038/nrc1673. PMID 16034366.
  9. Cunningham, Thomas J.; Yu, Michael S.; McKeithan, Wesley L.; Spiering, Sean; Carrette, Florent; Huang, Chun-Teng; Bushway, Paul J.; Tierney, Matthew; Albini, Sonia; Giacca, Mauro; Mano, Miguel; Puri, Pier Lorenzo; Sacco, Alessandra; Ruiz-Lozano, Pilar; Riou, Jean-Francois; Umbhauer, Muriel; Duester, Gregg; Mercola, Mark; Colas, Alexandre R. (1 July 2017). "Id genes are essential for early heart formation". Genes & Development. 31 (13): 1325–1338. doi:10.1101/gad.300400.117. PMC 5580654. PMID 28794185.
  10. "Entrez Gene: ID1 inhibitor of DNA binding 1, dominant negative helix-loop-helix protein".
  11. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (March 2004). "The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis". Nature. 428 (6980): 328–32. doi:10.1038/nature02329. PMID 15029197.
  12. Langlands K, Yin X, Anand G, Prochownik EV (August 1997). "Differential interactions of Id proteins with basic-helix-loop-helix transcription factors". J. Biol. Chem. 272 (32): 19785–93. doi:10.1074/jbc.272.32.19785. PMID 9242638.
  13. Finkel T, Duc J, Fearon ER, Dang CV, Tomaselli GF (January 1993). "Detection and modulation in vivo of helix-loop-helix protein-protein interactions". J. Biol. Chem. 268 (1): 5–8. PMID 8380166.
  14. Gupta K, Anand G, Yin X, Grove L, Prochownik EV (March 1998). "Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc". Oncogene. 16 (9): 1149–59. doi:10.1038/sj.onc.1201634. PMID 9528857.
  15. McLoughlin P, Ehler E, Carlile G, Licht JD, Schäfer BW (October 2002). "The LIM-only protein DRAL/FHL2 interacts with and is a corepressor for the promyelocytic leukemia zinc finger protein". J. Biol. Chem. 277 (40): 37045–53. doi:10.1074/jbc.M203336200. PMID 12145280.
  16. Ling MT, Chiu YT, Lee TK, Leung SC, Fung MK, Wang X, Wong KF, Wong YC (September 2008). "Id-1 induces proteasome-dependent degradation of the HBX protein". J. Mol. Biol. 382 (1): 34–43. doi:10.1016/j.jmb.2007.06.020. PMID 18674781.
  17. Jen Y, Weintraub H, Benezra R (August 1992). "Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins". Genes Dev. 6 (8): 1466–79. doi:10.1101/gad.6.8.1466. PMID 1644289.
  18. Qi J, Su Y, Sun R, Zhang F, Luo X, Yang Z, Luo X (March 2005). "CASK inhibits ECV304 cell growth and interacts with Id1". Biochem. Biophys. Res. Commun. 328 (2): 517–21. doi:10.1016/j.bbrc.2005.01.014. PMID 15694377.
  19. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R, Bader BL, Hynes RO, Zhuang Y, Manova K, Benezra R (October 1999). "Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts". Nature. 401 (6754): 670–7. doi:10.1038/44334. PMID 10537105.
  20. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (November 2001). "Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth". Nat. Med. 7 (11): 1194–201. doi:10.1038/nm1101-1194. PMID 11689883.
  21. Henke E, Perk J, Vider J, de Candia P, Chin Y, Solit DB, Ponomarev V, Cartegni L, Manova K, Rosen N, Benezra R (January 2008). "Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo". Nat. Biotechnol. 26 (1): 91–100. doi:10.1038/nbt1366. PMID 18176556.
  22. Mellick AS, Plummer PN, Nolan DJ, Gao D, Bambino K, Hahn M, Catena R, Turner V, McDonnell K, Benezra R, Brink R, Swarbrick A, Mittal V (September 2010). "Using the transcription factor inhibitor of DNA binding 1 to selectively target endothelial progenitor cells offers novel strategies to inhibit tumour angiogenesis and growth". Cancer Res. 70 (18): 7273–82. doi:10.1158/0008-5472.CAN-10-1142. PMC 3058751. PMID 20807818.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.