2020 in paleontology

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2020.

List of years in paleontology (table)
In archosaur paleontology
2017
2018
2019
2020
2021
2022
2023
In mammal paleontology
2017
2018
2019
2020
2021
2022
2023
In reptile paleontology
2017
2018
2019
2020
2021
2022
2023
List of years in paleontology (table)
In paleoichthyology
2017
2018
2019
2020
2021
2022
2023
In arthropod paleontology
2017
2018
2019
2020
2021
2022
2023
In insect paleontology
2017
2018
2019
2020
2021
2022
2023
List of years in paleontology (table)
In paleomalacology
2017
2018
2019
2020
2021
2022
2023
In paleobotany
2017
2018
2019
2020
2021
2022
2023

Plants

Sponges

Name Novelty Status Authors Age Type locality Country Notes Images
Endostoma stellata[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae.

Eoghanospongia[3]

Gen. et sp. nov

Valid

Botting et al.

Silurian (Telychian)

 United Kingdom

A hexactinellid sponge. Genus includes new species E. carlinslowpensis. Announced in 2019; the final version of the article naming it was published in 2020.

Eudea maxima[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae.
Iniquispongia[2] Gen. et sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae. The type species is I. iranica.
Polyendostoma? irregularis[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae.
Polyendostoma? regularis[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae.
Preperonidella tabasensis[2] Sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Jurassic (Callovian-Oxfordian) Qale-Dokhtar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae.
Seriespongia[2] Gen. et sp. nov Valid Senowbari-Daryan, Fürsich & Rashidi Middle Jurassic (Callovian) Esfandiar Limestone Formation  Iran A calcareous sponge belonging the family Endostomatidae. The type species is S. iranica.

Shouzhispongia[4]

Gen. et 2 sp. nov

In press

Botting et al.

Ordovician (Hirnantian)

 China

A rossellid sponge. Genus includes S. coronata and S. prodigia.

Spongia mantelli[5]

Nom. nov

Valid

Van Soest, Hooper & Butler

Cretaceous

 United Kingdom

A replacement name for Spongia ramosa Mantell (1822).

Cnidarians

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Actinoseris riyadhensis[6] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma  Saudi Arabia A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Asteroseris arabica[6] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma  Saudi Arabia A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Bowanophyllum ramosum[7] Sp. nov Valid Wang, Percival & Zhen Ordovician (Katian) Malachis Hill  Australia A rugose coral.
Cunnolites (Plesiocunnolites) riyadhensis[6] Sp. nov Valid Gameil, El-Sorogy & Al-Kahtany Late Cretaceous (Campanian) Aruma  Saudi Arabia A solitary coral. Announced in 2018; the final version of the article naming it was published in 2020.
Galliconularia[8] Gen. et comb. nov Valid Van Iten & Lefebvre Ordovician (Tremadocian) Saint-Chinian  France A member of Conulariida. The type species is "Conularia" azaisi Thoral (1935).
Hanagyroia[9] Gen. et sp. nov Valid Wang et al. Early Cambrian Kuanchuanpu  China A medusozoan of uncertain phylogenetic placement, possibly representing an intermediate morphological type between scyphozoans and cubozoans. Genus includes new species H. orientalis.
Hemiagetiolites longiseptatus[7] Sp. nov Valid Wang, Percival & Zhen Ordovician (Katian) Malachis Hill  Australia A tabulate coral.
Heteroamphiastrea[10] Gen. et sp. nov Valid Kołodziej Early Cretaceous (Aptian)  Tanzania A stony coral belonging to the superfamily Heterocoenioidea and the family Carolastraeidae. Genus includes new species H. loeseri.
Heterostrotion huaqiaoense[11] Sp. nov Valid Denayer et al. Early Carboniferous  China A rugose coral
Neosyringaxon michelini[12] Sp. nov Valid Weyer & Rohart Devonian (Frasnian)  France A rugose coral belonging to the family Petraiidae
Paramixogonaria wangyouensis[13] Sp. nov Valid Liao & Liang Devonian (Givetian) Wenglai  China A rugose coral.
Sanidophyllum dubium[14] Sp. nov In press Yu et al. Devonian (Emsian) Mia Le  Vietnam A rugose coral.
Siphonophyllia khenifrense[15] Sp. nov Rodríguez, Said & Somerville in Rodríguez et al. Carboniferous (Viséan) Azrou-Khenifra  Morocco A rugose coral belonging to the family Cyathopsidae
Stylostrotion houi[11] Sp. nov Valid Denayer et al. Carboniferous (Viséan)  China A rugose coral

Arthropods

Bryozoans

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Anastomopora blankenheimensis[16] Sp. nov Valid Ernst Devonian  Germany
Anastomopora minor[16] Sp. nov Valid Ernst Devonian  Germany
Anomalotoechus parvus[17] Sp. nov Valid Ernst, Bahrami & Parast Devonian (Famennian) Bahram  Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Atactotoechidae.

Biforicula collinsi[18]

Sp. nov

Valid

Taylor

Early Cretaceous (Albian)

Gault

 United Kingdom

Cheethamia volgaensis[19] Sp. nov In press Koromyslova & Seltser Late Cretaceous (Maastrichtian)  Russia
( Saratov Oblast)
A member of Cheilostomata
Dyscritella kalmardensis[20] Sp. nov In press Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh  Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Dyscritellidae
Dyscritella multiporata[20] Sp. nov In press Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh  Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Dyscritellidae
Filites bakharevi[21] Sp. nov Valid Mesentseva in Mesentseva & Udodov Devonian (Emsian)  Russia
Filites fragilis[21] Sp. nov Valid Udodov in Mesentseva & Udodov Devonian (Emsian)  Russia
Filites regularis[21] Sp. nov Valid Mesentseva in Mesentseva & Udodov Devonian (Emsian)  Russia
Filites vulgaris[21] Sp. nov Valid Udodov in Mesentseva & Udodov Devonian (Emsian)  Russia
Microporella tanyae[22] Sp. nov Valid Di Martino, Taylor & Gordon Pliocene Yorktown  United States
( Virginia)
A member of the family Microporellidae.
Parastenodiscus sinaiensis[23] Sp. nov In press Ernst et al. Carboniferous (Mississippian)  Egypt A member of Trepostomata
Rhombopora aryani[20] Sp. nov In press Ernst & Gorgij Carboniferous (Pennsylvanian) Siliciclastic Imagh  Iran A member of Cryptostomata belonging to the group Rhabdomesina and to the family Rhomboporidae
Zefrehopora[17] Gen. et sp. nov Valid Ernst, Bahrami & Parast Devonian (Famennian) Bahram  Iran A member of Trepostomata belonging to the group Amplexoporina and to the family Eridotrypellidae. The type species is Z. asynithis.

Brachiopods

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Askerina[24] Gen. et sp. nov In press Baarli Ordovician (Hirnantian) and Silurian (Aeronian) Solvik  Norway A member of the family Atrypidae. The type species is A. cymbula.
Beaussetithyris[25] Gen. et sp. nov Gaspard & Charbonnier Late Cretaceous (Santonian)  France A member of Rhynchonellida belonging to the family Cyclothyrididae. The type species is B. asymmetrica.
Biconvexiella saopauloensis[26] Sp. nov In press Simões et al. Late Paleozoic Taciba  Brazil
Brevilamnulella minuta[27] Sp. nov Valid Jin & Blodgett Late Ordovician  United States
( Alaska)
Chilcatreta lariojana[28] Sp. nov Valid Lavié & Benedetto Ordovician Suri  Argentina A siphonotretid brachiopod. Announced in 2019; the final version of the article naming it was published in 2020.
Chinellirostra[29] Gen. et sp. nov In press Baranov, Qiao & Blodgett Devonian (Givetian)  China A member of the family Stringocephalidae. Genus includes new species C. rara.
Contortithyris[25] Gen. et sp. nov Gaspard & Charbonnier Late Cretaceous (Santonian) Micraster  France A member of Rhynchonellida belonging to the family Cyclothyrididae. The type species is C. thermae.
Cyclothyris cardiatelia[30] Sp. nov In press Berrocal-Casero, Barroso-Barcenilla & Joral Late Cretaceous (Coniacian)  Spain A member of Rhynchonellida
Cyclothyris grimargina[25] Sp. nov Gaspard & Charbonnier Late Cretaceous (Campanian) Micraster  France A member of Rhynchonellida belonging to the family Cyclothyrididae
Cyclothyris nekvasilovae[31] Sp. nov Valid Berrocal-Casero, Joral & Barroso-Barcenilla Late Cretaceous (Cenomanian)  Czech Republic A member of Rhynchonellida belonging to the family Cyclothyrididae
Cyclothyris segurai[30] Sp. nov In press Berrocal-Casero, Barroso-Barcenilla & Joral Late Cretaceous (Coniacian)  Spain A member of Rhynchonellida
Dihelictera askeriensis[24] Sp. nov In press Baarli Ordovician (Hirnantian) and Silurian (Aeronian) Solvik  Norway A member of the family Atrypidae
Dogdoa talyndzhensis[32] Sp. nov Valid Baranov Early Devonian  Russia A member of Rhynchonellida.
Elliptoglossa kononovae[33] Sp. nov Valid Smirnova & Zhegallo Devonian (Famennian)  Russia A member of Lingulida.
Famatinobolus[28] Gen. et sp. nov Valid Lavié & Benedetto Ordovician Suri  Argentina An obolid brachiopod. Genus includes new species F. cancellatum. Announced in 2019; the final version of the article naming it was published in 2020.
Germanoplatidia[34] Gen. et comb. nov Valid Dulai & Von der Hocht Oligocene (Chattian)  Germany A member of Terebratulida belonging to the family Platidiidae; a new genus for "Terebratula" pusilla Philippi (1843).
Jordanithyris[35] Gen. et sp. nov In press Feldman et al. Middle Jurassic (Bathonian and Callovian) Hamam

Mughanniyya

 Jordan A member of Terebratulida. Genus includes new species J. ardainensis.
Joviatrypa nakremi[24] Sp. nov In press Baarli Silurian (Aeronian) Solvik  Norway A member of the family Atrypidae
Kirkidium canberrense[36] Sp. nov Valid Strusz Silurian (Wenlock) Canberra  Australia A member of Pentamerida belonging to the family Pentameridae.
Kutchithyris simoni[37] Sp. nov In press Feldman et al. Middle Jurassic (Callovian) Mughanniyya  Jordan
Lambdarina winklerprinsi[38] Sp. nov Valid Voldman et al. Carboniferous (Pennsylvanian) San Emiliano  Spain
Lingulellotreta yuanshanensis[39] Sp. nov Valid Zhang et al. Cambrian  China
Linnaeocaninella[40] Nom. nov Valid Hernández Middle Permian Lengwu  China A replacement name for Caninella Liang (1990)
Lithobolus limbatum[28] Sp. nov Valid Lavié & Benedetto Ordovician Suri  Argentina An obolid brachiopod. Announced in 2019; the final version of the article naming it was published in 2020.
Mishninia[32] Gen. et sp. nov Valid Baranov Early Devonian  Russia The type species is M. nodosa
Neobolus wulongqingensis[41] Sp. nov Valid Zhang, Strotz, Topper & Brock in Zhang et al. Cambrian Stage 4 Wulongqing  China A member of Lingulida belonging to the family Neobolidae. Many specimens had tubeworm-like kleptoparasites attached to their shells.
Neochonetes (Sommeriella) longa[42] Sp. nov Valid Wu et al. Permian (Changhsingian) Luokeng  China
Neochonetes (Sommeriella) transversa [42] Sp. nov Valid Wu et al. Permian (Changhsingian) Luokeng  China
Nottina[24] Gen. et sp. nov In press Baarli Silurian (Rhuddanian and Aeronian) Solvik  Norway A member of the family Atrypidae. The type species is N. phalerata.
Palaeotreta[43] Gen. et sp. et comb. nov Valid Zhang et al. Cambrian Series 2 Shuijingtuo  China A member of the family Acrotretidae. The type species is P. shannanensis; genus also includes "Eohadrotreta" zhujiahensis Li & Holmer (2004).
Paramickwitzia[44] Gen. et sp. nov Valid Pan et al. Cambrian Series 2 Xinji  China A stem-brachiopod belonging to the group Mickwitziidae. Genus includes new species P. boreussinaensis.
Plicarmus[45] Gen. et sp. nov Valid Claybourn et al. Cambrian Stage 4 Byrd Group Antarctica A member of Lingulata. Genus includes new species P. wildi.
Rhipidium oepiki[36] Sp. nov Valid Strusz Silurian (Wenlock) Canberra  Australia A member of Pentamerida belonging to the family Pentameridae.
Schachriomonia spiraensis[24] Sp. nov In press Baarli Ordovician-Silurian Solvik  Norway A member of the family Atrypidae
Sifella[24] Gen. et sp. nov In press Baarli Silurian (Aeronian) Solvik  Norway A member of the family Atrypidae. The type species is S. patera
Stringocephalus sinensis[29] Sp. nov In press Baranov, Qiao & Blodgett Devonian (Givetian)  China A member of the family Stringocephalidae.
Tapuritreta gribovensis[46] Sp. nov Valid Holmer et al. Cambrian (Guzhangian) Karpinsk Formation  Russia
( Arkhangelsk Oblast)
A member of the family Acrotretidae.
Tcherskidium tenuicostatus[27] Sp. nov Valid Jin & Blodgett Late Ordovician  United States
( Alaska)
Trigonithyris wilsoni[37] Sp. nov In press Feldman et al. Middle Jurassic (Callovian) Mughanniyya  Jordan
Vagrania naanchanensis[32] Sp. nov Valid Baranov Early Devonian  Russia A member of Atrypida.
Verchojania abramovi[47] Sp. nov Valid Makoshin Late Carboniferous  Russia A member of Productida
Wahwahlingula? pankovensis[46] Sp. nov Valid Holmer et al. Cambrian (Guzhangian) Karpinsk Formation  Russia
( Arkhangelsk Oblast)
A member of Linguloidea belonging to the family Zhanatellidae.
Woodwardirhynchia pontemdiaboli[30] Sp. nov In press Berrocal Casero, Barroso Barcenilla & Joral Late Cretaceous (Coniacian)  Spain A member of Rhynchonellida
Yangirostra[29] Gen. et sp. nov In press Baranov, Qiao & Blodgett Devonian (Givetian)  China A member of the family Stringocephalidae. Genus includes new species Y. asiatica.
Zygospiraella nupera[24] Sp. nov In press Baarli Silurian (Aeronian) Solvik  Norway A member of the family Atrypidae

Molluscs

Echinoderms

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Abertella carlsoni[48] Sp. nov Valid Osborn, Portell & Mooi Miocene  United States
( Florida)
A sea urchin.
Abludoglyptocrinus steinheimerae[49] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
 Canada
( Ontario)
A monobathrid crinoid.
Aerliceaster[50] Gen. et sp. nov Valid Blake, Gahn & Guensburg Ordovician (Floian) Garden City  United States
( Idaho)
A starfish. Genus includes new species A. nexosus.
Alkaidia megaungula[51] Sp. nov Valid Ewin & Gale Early Cretaceous (Barremian) Taba  Morocco A starfish belonging to the family Terminasteridae.
Arceoaster[52] Gen. et sp. nov Valid Blake & Sprinkle Silurian Hunton Group  United States
( Oklahoma)
A starfish belonging to the family Hudsonasteridae. Genus includes new species A. hintei.
Brissopsis hoffmani[48] Sp. nov Valid Osborn, Portell & Mooi Miocene  United States
( Florida)
A sea urchin.
Calclyra bifida[53] Sp. nov Valid Pabst & Herbig Carboniferous (Serpukhovian) Genicera  Spain A brittle star belonging to the group Oegophiurida and the family Calclyridae.
Clypeaster petersonorum[48] Sp. nov Valid Osborn, Portell & Mooi Miocene  United States
( Florida)
A species of Clypeaster.
Comptonia bretoni[54] Sp. nov In press Gale Early Cretaceous (Aptian) Atherfield  United Kingdom A starfish
Coulonia caseyi[54] Sp. nov In press Gale Early Cretaceous (Aptian) Atherfield  United Kingdom An astropectinid starfish
Cyclogrupera[55] Gen. et sp. nov Torres-Martínez, Villanueva-Olea & Sour-Tovar Permian (AsselianSakmarian) Grupera  Mexico A crinoid belonging to the family Cyclomischidae. The type species is C. minor.
Discocrinus africanus[56] Sp. nov In press Gale Late Cretaceous (Cenomanian) Aït Lamine  Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae.
Drepanocrinus wardorum[56] Sp. nov In press Gale Late Cretaceous (Cenomanian)

 Morocco
 Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Durhamicystis[57] Gen. et sp. nov Valid Zamora, Sprinkle & Sumrall Ordovician (Sandbian) Chambersburg  United States
( Maryland)
A member of Eocrinoidea belonging to the family Rhipidocystidae. The type species is D. americana.
Echinosphaerites dianae[58] Sp. nov In press Zamora et al. Late Ordovician  Morocco A rhombiferan blastozoan
Euglyphocrinus cristagalli[56] Sp. nov In press Gale Early Cretaceous (Albian)

 Morocco
 United States
( Texas)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus jacobsae[56] Sp. nov In press Gale Late Cretaceous (Cenomanian)

 Morocco
 Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus truncatus[56] Sp. nov In press Gale Late Cretaceous (Cenomanian)

 Morocco
 Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euglyphocrinus worthensis[56] Sp. nov In press Gale Early Cretaceous (Albian)

 Morocco
 United States
( Texas)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Euptychocrinus? atelis[59] Sp. nov In press Botting Late Ordovician  Morocco A camerate crinoid
Euptychocrinus longipinnulus[60] Sp. nov Valid Fearnhead et al. Silurian (Telychian) Pysgotwr Grits  United Kingdom A camerate crinoid
Fenestracrinus[56] Gen. et sp. nov In press Gale Late Cretaceous (Cenomanian) Aït Lamine  Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae. The type species is F. oculifer.
Fernandezaster whisleri[48] Sp. nov Valid Osborn, Portell & Mooi Pliocene  United States
( Florida)
A sea urchin.
Floricyclocion[55] Gen. et sp. nov Torres-Martínez, Villanueva-Olea & Sour-Tovar Permian (Asselian‒Sakmarian) Grupera  Mexico A crinoid belonging to the family Floricyclidae. The type species is F. heteromorpha.
Gagaria hunterae[48] Sp. nov Valid Osborn, Portell & Mooi Miocene  United States
( Florida)
A sea urchin.
Genocidaris oyeni[48] Sp. nov Valid Osborn, Portell & Mooi Pliocene  United States
( Florida)
A sea urchin.
Heterobrissus lubellii[61] Sp. nov Valid Borghi & Stara Late Oligocene-early Miocene  Italy A heart urchin.
Holocrinus qingyanensis[62] Sp. nov In press Stiller Middle Triassic (Anisian)  China A crinoid belonging to the family Holocrinidae
Homocystites adidiensis[58] Sp. nov In press Zamora et al. Late Ordovician  Morocco A rhombiferan blastozoan
Iocrinus ouzammoui[59] Sp. nov In press Botting Late Ordovician  Morocco A crinoid belonging to the group Disparida
Isocrinus (Chladocrinus) covuncoensis[63] Sp. nov Valid Lazo et al. Early Cretaceous (Valanginian) Agrio  Argentina A crinoid.
Isocrinus (Chladocrinus) pehuenchensis[63] Sp. nov Valid Lazo et al. Early Cretaceous (Hauterivian) Agrio  Argentina A crinoid.
Isthloucrinus[59] Gen. et sp. nov In press Botting Late Ordovician  Morocco A crinoid belonging to the group Cladida. Genus includes new species I. praecursor.
Kolataster[50] Gen. et sp. nov Valid Blake, Gahn & Guensburg Ordovician (Sandian) Mifflin  United States
( Illinois)
A starfish. Genus includes new species K. perplexus.
Lebenharticrinus quinvigintensis[56] Sp. nov In press Gale Late Cretaceous (Cenomanian) Aït Lamine  Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae
Lebenharticrinus zitti[56] Sp. nov In press Gale Late Cretaceous (Cenomanian) Aït Lamine  Morocco A crinoid belonging to the group Articulata and the family Roveacrinidae
Linguaserra heidii[53] Sp. nov Valid Pabst & Herbig Carboniferous (Tournaisian to Serpukhovian) Genicera
Heiligenhaus
 Germany
 Spain
A member of Ophiocistioidea belonging to the family Linguaserridae.
Lovenia kerneri[48] Sp. nov Valid Osborn, Portell & Mooi Pliocene  United States
( Florida)
A species of Lovenia.
Magnasterella[64] Gen. et comb. nov In press Fraga & Vega Devonian (Frasnian) Ponta Grossa  Brazil A starfish belonging to the group Euaxosida; a new genus for "Echinasterella" darwini Clarke (1913).
Marginix notatus[64] Sp. nov In press Fraga & Vega Devonian (Frasnian) Ponta Grossa  Brazil A brittle star
Odontaster tabaensis[51] Sp. nov Valid Ewin & Gale Early Cretaceous (Barremian) Taba  Morocco A starfish, a species of Odontaster.
Ophiacantha oceani[65] Sp. nov Valid Numberger-Thuy & Thuy Pliocene to Pleistocene (Piacenzian to Gelasian)  Italy A brittle star belonging to the family Ophiacanthidae.
Panidiscus[66] Gen. et sp. nov In press Sumrall & Zamora Ordovician (Katian)  Morocco An isorophinid edrioasteroid. Genus includes new species P. tamiformis.
Paragonaster felli[67] Sp. nov Valid Stevens Early Cretaceous  New Zealand A starfish.
Paranaster[64] Gen. et comb. nov In press Fraga & Vega Devonian (Emsian) Ponta Grossa  Brazil A starfish belonging to the group Euaxosida. Genus includes new species P. crucis.
Pararchaeocrinus kiddi[49] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
 Canada
( Ontario)
A diplobathrid crinoid.
Peckicrinus[68] Gen. et comb. nov In press Gale in Gale et al. Early Cretaceous (Albian) Duck Creek  United States
( Oklahoma
 Texas)
A crinoid belonging to the family Roveacrinidae. The type species is "Poecilocrinus" porcatus Peck (1943).
Pegoasterella[69] Gen. et sp. nov Valid Blake & Koniecki Late Ordovician Bromide
Guttenberg
 United States
( Illinois
 Oklahoma)
A starfish belonging to the family Urasterellidae. Genus includes new species P. pompom.
Periglyptocrinus astricus[49] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
 Canada
( Ontario)
A monobathrid crinoid.
Periglyptocrinus kevinbretti[49] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
 Canada
( Ontario)
A monobathrid crinoid.
Periglyptocrinus mcdonaldi[49] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
 Canada
( Ontario)
A monobathrid crinoid.
Periglyptocrinus silvosus[49] Sp. nov Valid Cole et al. Ordovician (Katian) Brechin Lagerstätte
Bobcaygeon & Verulam
 Canada
( Ontario)
A monobathrid crinoid.
Plotocrinus molineuxae[68] Sp. nov In press Gale in Gale et al. Early Cretaceous (Albian) Goodland  United States
( Texas)
A crinoid belonging to the family Roveacrinidae.
Plotocrinus rashallae[68] Sp. nov In press Gale in Gale et al. Early Cretaceous (Albian) Goodland  France
 United States
( Texas)
A crinoid belonging to the family Roveacrinidae.
Plotocrinus reidi[68] Sp. nov In press Gale in Gale et al. Early Cretaceous (Albian) Kiamichi  United States
( Texas)
A crinoid belonging to the family Roveacrinidae.
Psammaster[70] Gen. et comb. nov Valid Fau et al. Late Jurassic (Tithonian) Grès des Oies  France A starfish belonging to the group Forcipulatida. The type species is "Ophidiaster" davidsoni de Loriol & Pellat (1874).
Rhyncholampas meansi[48] Sp. nov Valid Osborn, Portell & Mooi Pleistocene  United States
( Florida)
A sea urchin.
Roveacrinus gladius[56] Sp. nov In press Gale Late Cretaceous (Cenomanian)

 Morocco
 Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Roveacrinus morganae[68] Sp. nov In press Gale in Gale et al. Early Cretaceous (Albian) Pawpaw  United States
( Texas)
A crinoid belonging to the family Roveacrinidae.
Roveacrinus proteus[68] Sp. nov In press Gale in Gale et al. Early Cretaceous (Albian) Pawpaw  United States
( Texas)
A crinoid belonging to the family Roveacrinidae.
Roveacrinus solisoccasum[56] Sp. nov In press Gale Early Cretaceous (Albian)

 Morocco
 United States
( Texas)

A crinoid belonging to the group Articulata and the family Roveacrinidae
Schoenaster carterensis[71] Sp. nov Valid Harris, Ettensohn & Carnahan-Jarvis Carboniferous (Chesterian) Slade  United States
( Kentucky)
A brittle star
Spinadiscus[66] Gen. et sp. nov In press Sumrall & Zamora Ordovician (Katian)  Morocco A pyrgocystid edrioasteroid. Genus includes new species S. lefebvrei.
Styracocrinus rimafera[56] Sp. nov In press Gale Late Cretaceous (Cenomanian)

 Morocco
 Tunisia

A crinoid belonging to the group Articulata and the family Roveacrinidae
Styracocrinus thomasae[68] Sp. nov In press Gale in Gale et al. Early Cretaceous (Albian) Goodland  United States
( Texas)
A crinoid belonging to the family Roveacrinidae.
Superlininicrinus[59] Gen. et sp. nov In press Botting Late Ordovician  Morocco A crinoid belonging to the group Cladida. Genus includes new species S. advorsa.
Tollmannicrinus leidapoensis[62] Sp. nov In press Stiller Middle Triassic (Anisian)  China A crinoid
Vaquerosella perrillatae[72] Sp. nov Valid Martínez Melo & Alvarado Ortega Miocene San Ignacio  Mexico A sand dollar belonging to the family Echinarachniidae

Research

  • A study on morphological diversification of echinoderms and evolutionary mechanisms underlying the establishment of echinoderm body plans during the early Paleozoic is published by Deline et al. (2020).[73]
  • A study on the locomotion of cornute stylophorans, based on data from a specimen of Phyllocystis crassimarginata from the Ordovician (Tremadocian) Saint-Chinian Formation (France), is published by Clark et al. (2020).[74]
  • A study on the morphology and phylogenetic relationships of Hexedriocystis is published by Zamora & Sumrall (2020), who consider this taxon to be a blastozoan.[75]
  • A study on the speciation and dispersal of the diploporan blastozoans through the Ordovician period is published by Lam, Sheffield & Matzke (2020).[76]
  • A study on the evolutionary history of eublastoid blastozoans is published by Bauer (2020).[77]

Conodonts

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Ancyrognathus minjini[78] Sp. nov Valid Suttner et al. Late Devonian Baruunhuurai  Mongolia Announced in 2019; the final version of the article naming it was published in 2020.
Baltoniodus norrlandicus denticulatus[79] Subsp. nov Valid Dzik Ordovician (Darriwilian)  Poland Announced in 2019; the final version of the article naming it was published in 2020.
Belodina watsoni[80] Sp. nov In press Zhen Ordovician (Darriwilian)  Australia
Bipennatus hemilevigatus[81] Sp. nov In press Lu & Königshof Devonian (Eifelian) Beiliu  China
Bipennatus planus[81] Sp. nov In press Lu & Königshof Devonian (Eifelian) Beiliu  China
Diplognathodus benderi[82] Sp. nov Valid Hu et al. Carboniferous (BashkirianMoscovian boundary)  China
Erraticodon neopatu[83] Sp. nov In press Zhen in Zhen et al. Ordovician Willara  Australia
Idiognathodus fengtingensis[84] Sp. nov Valid Qi et al. Carboniferous (KasimovianGzhelian boundary)  China
Idiognathodus luodianensis[84] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary)  China
Idiognathodus naqingensis[84] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary)  China
Idiognathodus naraoensis[84] Sp. nov Valid Qi et al. Carboniferous (Kasimovian–Gzhelian boundary)  China
Misikella kolarae[85] Sp. nov Valid Karádi et al. Late Triassic  Hungary Announced in 2019; the final version of the article naming it was published in 2020.
Polygnathus nalaiensis[81] Sp. nov In press Lu & Königshof Devonian (Eifelian) Beiliu  China
Rossodus? boothiaensis[86] Sp. nov In press Zhang Turner Cliffs  Canada
( Nunavut)
Scalpellodus percivali[80] Sp. nov In press Zhen Ordovician (Darriwilian)  Australia
Scythogondolella dolosa[87] Sp. nov Valid Bondarenko & Popov Early Triassic  Russia
( Primorsky Krai)
Siphonodella leiosa[88] Sp. nov In press Souquet, Corradini & Girard Carboniferous (Tournaisian)  France
Streptognathodus nemyrovskae[84] Sp. nov Valid Qi et al. Carboniferous (Gzhelian)  China
Streptognathodus zhihaoi[84] Sp. nov Valid Qi et al. Carboniferous (Gzhelian)  China
Tortodus dodoensis[89] Sp. nov Valid Gouwy, Uyeno & McCracken Devonian (Givetian)  Canada Announced in 2019; the final version of the article naming it was published in 2020.
Trapezognathus pectinatus[79] Sp. nov Valid Dzik Ordovician (Darriwilian)  Poland Announced in 2019; the final version of the article naming it was published in 2020.
Zieglerodina petrea[90] Sp. nov Valid Hušková & Slavík Silurian/Devonian boundary Prague Synform  Czech Republic Announced in 2019; the final version of the article naming it was published in 2020.

Research

  • Evidence of variations in crystallography and microstructure due to both ontogeny and element type within the conodont feeding apparatus of Dapsilodus obliquicostatus is presented by Shohel et al. (2020), who evaluate the implications of their findings for the knowledge of the integrity of conodont apatite as a recorder of seawater chemistry.[91]

Fishes

Amphibians

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Balveherpeton[92] Gen. et sp. nov In press Skutschas, Kolchanov & Schwermann Early Cretaceous (BarremianAptian)  Germany A salamandroid salamander. Genus includes new species B. hoennetalensis.
Benthosuchus lukyanovi[93] Sp. nov Valid Morkovin Early Triassic  Russia
( Vologda Oblast)
Brittagnathus[94] Gen. et sp. nov Valid Ahlberg & Clack Devonian (Famennian) Britta Dal  Greenland A basal tetrapod. The type species is B. minutus.
Calyptocephalella sabrosa[95] Sp. nov Valid Muzzopappa et al. Paleocene (Danian) Salamanca  Argentina A frog, a species of Calyptocephalella.
Egoria[96] Gen. et sp. nov Valid Skutschas et al. Middle Jurassic (Bathonian) Itat  Russia
( Krasnoyarsk Krai)
A stem-salamander. The type species is E. malashichevi.
Kururubatrachus[97] Gen. et sp. nov In press Agnolin et al. Early Cretaceous (Aptian) Crato  Brazil A neobatrachian frog resembling extant members of Hyloidea. Genus includes new species K. gondwanicus.
Leptoropha minima[98] Sp. nov Valid Bulanov Permian  Russia
( Tatarstan)
A member of Seymouriamorpha
Palaeoproteus miocenicus[99] Sp. nov Valid Vasilyan & Yanenko Miocene (Vallesian)  Austria

 Ukraine

A salamander belonging to the family Batrachosauroididae
Rastosuchus[100] Gen. et sp. nov Valid Dias, Dias-da-Silva & Schultz Permian Rio do Rasto  Brazil A temnospondyl belonging to the family Rhinesuchidae. The type species is R. hammeri.
Steenerpeton[101] Gen. et sp. nov Valid Mann et al. Carboniferous (Pennsylvanian) Joggins  Canada
( Nova Scotia)
A recumbirostran "microsaur". Genus includes new species S. silvae.

Research

  • A study evaluating the effects of ontogenetic disparity of known trematopid specimens on reconstructions of the phylogenetic relationships of trematopids is published by Gee (2020).[102]
  • Redescription of Actiobates peabodyi, including an updated description of the skull and the first description of the postcranial skeleton, is published by Gee & Reisz (2020).[103]
  • New amphibamiform specimen with exceptionally preserved lissamphibian-like integumentary structures, including the first evidence of toepad structures in a temnospondyl body fossil, is described from the Mazon Creek fossil beds by Mann & Gee (2020).[104]
  • Description of the anatomy of the skull of Pasawioops mayi, and a study on the ontogeny of this taxon, is published by Atkins et al. (2020).[105]
  • A study on growth patterns in Doleserpeton annectens, as indicated by bone histology, is published by Gee, Haridy & Reisz (2020).[106]
  • A study on a specimen of Benthosuchus korobkovi from the Olenekian of Russia affected by a neoplastic bone lesion in its jaw, representing the earliest case of such lesion in a tetrapod reported so far, is published by Novikov et al. (2020), who propose a non-odontogenic osteoma as the most likely diagnosis.[107]
  • Redescription and a study on the phylogenetic relationships of Aphaneramma kokeni is published by Maisch (2020), who considers A. kokeni to be a valid taxon.[108]
  • Evidence of the presence of five metacarpals in a specimen of Metoposaurus krasiejowensis from the Upper Triassic of Poland is presented by Konietzko‐Meier et al. (2020), who interpret this finding as evidence of pentadactyly of the manus of M. krasiejowensis, showing that the presence of a five-digit manus among Temnospondyli was possible.[109]
  • New fossil material of albanerpetontids is described from the lower Campanian Aguja Formation (Texas, United States) by Wick (2020), who interprets this finding as indicating that albanerpetontids were locally abundant there and also widespread throughout much of the Western Interior of North America by early Campanian time.[110]
  • New specimen of Triassurus sixtelae is described from the Triassic of Kyrgyzstan by Schoch, Werneburg & Voigt (2020), who identify this species as the oldest known stem-group salamander.[111]
  • A study on the diversity of skull shape in extant and fossil ribbed and crocodile newts, the relationship between their skull shape and ecological and reproductive traits, and its implications for the knowledge of the ecology of Chelotriton, is published by Pogoda et al. (2020).[112]
  • Right ilium and a skull bone of a frog belonging to the genus Calyptocephalella are reported from the Eocene (Bartonian) La Meseta Formation (Antarctica) by Mörs, Reguero & Vasilyan (2020), representing the first record of a lissamphibian in Antarctica reported so far.[113]
  • Partial humerus of a member of the genus Eleutherodactylus is described from the Oligocene San Sebastian Formation (Puerto Rico) by Blackburn et al. (2020), representing the earliest fossil frog from any Caribbean island reported so far.[114]
  • Redescription of the anatomy and a study on the phylogenetic relationships of Eldeceeon rolfei is published by Ruta, Clack & Smithson (2020).[115]
  • A study on the long bone histology, growth rate and the timing of the attainment of sexual maturity in seymouriamorphs is published by Jordi Estefa et al. (2020).[116]
  • A study on the anatomy of the braincase and otic capsule of Seymouria is published by Bazzana et al. (2020).[117]
  • Description of new postcranial material of Seymouria from the Richards Spur locality (Oklahoma, United States), and a study on bone histology, life histories and evolution of terrestriality of seymouriamorphs, is published by Bazzana et al. (2020).[118]
  • A study on the anatomy of the skull of Euryodus dalyae, providing new information on the anatomy of the braincase and mandible, is published by Gee, Bevitt & Reisz (2020).[119]
  • Description of the anatomy of the braincase and stapes of Diadectes absitus is published by Klembara et al. (2020).[120]

Reptiles

Synapsids

Non-mammalian synapsids

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Bohemiclavulus[121] Gen. et comb. nov Valid Spindler, Voigt & Fischer Carboniferous (Gzhelian) Slaný  Czech Republic A member of the family Edaphosauridae; a new genus for "Naosaurus" mirabilis Fritsch (1895). Announced in 2019; the final version of the article naming it was published in 2020.

Caodeyao[122] Gen. et sp. nov Valid Liu & Abdala Late Permian Naobaogou  China A therocephalian. Genus includes new species C. liuyufengi.
Chiniquodon omaruruensis[123] Sp. nov Valid Mocke, Gaetano & Abdala Triassic Omingonde  Namibia
Dendromaia[124] Gen. et sp. nov Valid Maddin, Mann & Hebert Carboniferous  Canada
( Nova Scotia)
A member of Varanopidae. Genus includes new species D. unamakiensis. Announced in 2019; the final version of the article naming it was published in 2020.
Hypselohaptodus[125] Gen. et comb. nov Valid Spindler Permian (Cisuralian) Kenilworth  United Kingdom An early member of Sphenacodontia; a new genus for "Haptodus" grandis. Announced in 2019; the final version of the article naming it was published in 2020.
Kenomagnathus[126] Gen. et sp. nov Valid Spindler Carboniferous (late Pennsylvanian) Rock Lake Shale Mb, Stanton  United States
( Kansas)
An early member of Sphenacodontia. The type species is K. scottae.

Martensius[127] Gen. et sp. nov Valid Berman et al. Permian (Artinskian) Tambach  Germany A member of Caseidae. The type species is M. bromackerensis.
Polonodon[128] Gen. et sp. nov Valid Sulej et al. Late Triassic (Carnian)  Poland A non-mammaliaform eucynodont. Genus includes new species P. woznikiensis. Announced in 2018; the final version of the article naming it was published in 2020.
Remigiomontanus[121] Gen. et sp. nov Valid Spindler, Voigt & Fischer CarboniferousPermian transition Saar–Nahe  Germany A member of the family Edaphosauridae. Genus includes new species R. robustus. Announced in 2019; the final version of the article naming it was published in 2020.
Taoheodon[129] Gen. et sp. nov In press Liu Late Permian Sunjiagou Formation  China A dicynodontoid dicynodont. Genus includes new species T. baizhijuni.

Research

  • A study on the evolution of the well-defined morphological regions of the vertebral column and of vertebral functional diversity in synapsids is published by Jones et al. (2020).[130]
  • A study aiming to determine the resting metabolic rates and the thermometabolic regimes (endothermy or ectothermy) in eight non-mammalian synapsids is published by Faure-Brac & Cubo (2020).[131]
  • A study on the shoulder musculature in extant Argentine black and white tegu and Virginia opossum, evaluating its implications for reconstructions of the shoulder musculature in non-mammalian synapsids, is published by Fahn-Lai, Biewener & Pierce (2020).[132]
  • A study aiming to determine whether a vicariance pattern can explain early synapsid evolution is published by Brikiatis (2020).[133]
  • Mann et al. (2020) reinterpret Carboniferous taxon Asaphestera platyris Steen (1934) from the Joggins locality (Nova Scotia, Canada) as the earliest unambiguous synapsid in the fossil record reported so far.[101]
  • A study on the long bone histology of varanopids from the lower Permian Richards Spur locality (Oklahoma, United States), evaluating its implications for the knowledge of the paleobiology of early synapsids, is published by Huttenlocker & Shelton (2020).[134]
  • Mann & Reisz (2020) report a new hyper-elongated neural spine of Echinerpeton intermedium from the Pennsylvanian-aged Sydney Mines Formation (Nova Scotia, Canada), indicating a wider distribution of hyper-elongation of vertebral neural spines in early synapsids than previously known.[135]
  • A study on the histology of vertebral centra of Edaphosaurus and Dimetrodon is published by Agliano, Sander & Wintrich (2020).[136]
  • A study on the anatomy of the holotype skull of Tetraceratops insignis and on the phylogenetic relationships of this taxon is published by Spindler (2020).[137]
  • A study comparing the oxygen and carbon stable isotope compositions of tooth and bone apatite of Endothiodon and Tropidostoma, and aiming to determine the ecology and diet of Endothiodon, is published by Rey et al. (2020).[138]
  • Redescription of the skull of Lycosuchus vanderrieti, providing new information on the endocranial anatomy of this taxon, is published by Pusch et al. (2020).[139]

Mammals

Other animals

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Aladraco kirchhainensis[140] Sp. nov Valid Geyer & Malinky Cambrian (Miaolingian) Delitzsch–Torgau–Doberlug  Germany A member of Hyolitha. Announced in 2019; the final version of the article naming it was published in 2020.
Armilimax[141] Gen. et sp. nov In press Kimmig & Selden Cambrian (Wuliuan) Spence Shale  United States
( Utah)
A shell-bearing animal of uncertain phylogenetic placement. Genus includes new species A. pauljamisoni.
Avitograptus akidomorphus[142] Sp. nov Valid Muir et al. Ordovician (Hirnantian) Wenchang  China A graptolite.
Canadiella[143] Gen. et comb. nov Valid Skovsted et al. Cambrian Mural
Rosella
 Canada A tommotiid belonging to the family Kennardiidae. The type species is "Lapworthella" filigrana Conway Morris & Fritz (1984).
Collinsovermis[144] Gen. et sp. nov Valid Caron & Aria Cambrian (Wuliuan) Burgess Shale  Canada
( British Columbia)
A luolishaniid lobopodian. Genus includes new species C. monstruosus.
Cordaticaris[145] Gen. et sp. nov In press Sun, Zeng & Zhao Cambrian (Drumian) Zhangxia  China A member of Radiodonta belonging to the family Hurdiidae. Genus includes new species C. striatus.
Dahescolex[146] Gen. et sp. nov In press Shao et al. Cambrian (Fortunian) Kuanchuanpu  China An animal which might be a stem-lineage derivative of Scalidophora. Genus includes new species D. kuanchuanpuensis.
Dakorhachis[147] Gen. et sp. nov Valid Conway Morris et al. Cambrian (Guzhangian) Weeks  United States
( Utah)
An animal of uncertain phylogenetic placement, possibly a stem-group member of the Gnathifera. Genus includes new species D. thambus.
Dannychaeta[148] Gen. et sp. nov Valid Chen et al. Early Cambrian Canglangpu  China A crown annelid, probably a relative of the families Magelonidae and Oweniidae. Genus includes new species D. tucolus.
"Dictyonema" khadijae[149] Sp. nov In press Gutiérrez Marco, Muir & Mitchell Late Ordovician  Morocco A graptolite
"Dictyonema" villasi[149] Sp. nov In press Gutiérrez Marco, Muir & Mitchell Late Ordovician  Morocco A graptolite
Ikaria[150] Gen. et sp. nov Valid Evans et al. Ediacaran  Australia An early bilaterian. Genus includes new species I. wariootia.
Korenograptus selectus[151] Sp. nov In press Chen in Chen et al. Late Ordovician  Myanmar A graptolite
Lenzograptus[152] Nom. nov In press Loydell Silurian (Ludlow)  Canada
( Yukon)
A graptolite; a replacement name for Lenzia Rickards & Wright (1999).
Microconchus cravenensis[153] Sp. nov Valid Zatoń & Mundy Carboniferous (Mississippian) Cracoe Limestone
Malham
 United Kingdom A member of Microconchida.
Microconchus maya[154] Sp. nov In press Heredia-Jiménez et al. Permian (Roadian) Paso Hondo  Mexico A member of Microconchida.
Monograptus hamulus[155] Sp. nov Valid Saparin et al. Silurian (Llandovery) Co To  Vietnam A graptolite
Neodiplograptus mandalayensis[151] Sp. nov In press Chen in Chen et al. Late Ordovician  Myanmar A graptolite
Onuphionella corusca[156] Sp. nov In press Muir et al. Ordovician (Sandbian) First Bani  Morocco Agglutinated tubes produced by unknown animal
Pristiograptus paradoxus[157] Sp. nov In press Loydell & Walasek Silurian (Telychian)  Sweden A graptolite
Torquigraptus loveridgei[157] Sp. nov In press Loydell & Walasek Silurian (Telychian)  Sweden A graptolite
Torquigraptus wilsoni[158] Sp. nov Valid Loydell Silurian (Telychian)  United Kingdom A graptolite
Toscanisoma[159] Gen. et 2 sp. nov Valid Wendt Late Triassic (Carnian) San Cassiano  Italy A member of Ascidiacea. The type species is T. multipartitum; genus also includes T. triplicatum.
Utahscolex[160] Gen. et comb. nov In press Whitaker et al. Cambrian (Wuliuan) Spence  United States
( Utah)
A palaeoscolecid; a new genus for "Palaeoscolex" ratcliffei Robison (1969)
Zhongpingscolex[161] Gen. et sp. nov In press Shao et al. Cambrian (Fortunian) Kuanchuanpu  China A scalidophoran, probably a stem-group kinorhynch. Genus includes new species Z. qinensis.
Zuunia[162] Gen. et sp. nov Yang et al. Late Ediacaran Zuun-Arts  Mongolia A cloudinid. The type species is Z. chimidtsereni.

Research

  • A study on the taphonomy of three-dimensionally preserved specimens of Charnia from the White Sea, and on their implications for the knowledge of rangeomorph feeding and physiology, is published by Butterfield (2020).[163]
  • Evidence of preservation of internal anatomical structures in cloudinomorph fossils from the Ediacaran Wood Canyon Formation (Nevada, United States) is reported by Schiffbauer et al. (2020), who interpret these structures as probable digestive tracts, and evaluate their implications for the knowledge of the phylogenetic relationships of cloudinomorphs.[164]
  • New specimens of Mafangscolex, providing the first detailed information on the anatomy of a proboscis in palaeoscolecids, are described from the Cambrian Xiaoshiba Lagerstätte (Kunming, China) by Yang et al. (2020).[165]
  • A study on the type material of a putative Ordovician annelid Haileyia adhaerens is published by Muir & Botting (2020) who find no evidence indicating that H. adhaerens is an annelid, or even a recognizable fossil.[166]
  • Two types of microscopic reticulate cuticular patterns are described in Cambrian stem-group scalidophorans from the Kuanchuanpu Formation (China) by Wang et al. (2020), who argue that these cuticular networks replicate the cell boundaries of the epidermis.[167]
  • A study on the anatomy and phylogenetic relationships of Facivermis yunnanicus, based on data from the holotype and new specimens, is published by Howard et al. (2020), who consider this species to be a luolishaniid lobopodian.[168]
  • An isolated frontal appendage of a miniature hurdiid radiodont (less than half the size of the next smallest radiodont frontal appendage discovered so far) is described from the Ordovician (Tremadocian) Dol-cyn-Afon Formation (Wales, United Kingdom) by Pates et al. (2020), representing the first radiodont reported from the UK, the first record of this group from the palaeocontinent Avalonia, and the first from an environment dominated by sponges rather than euarthropods.[169]

Foraminifera

Other organisms

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages
Anqiutrichoides[170] Gen. et sp. nov Valid Li et al. Tonian Shiwangzhuang  China A multicellular organism of uncertain phylogenetic placement, possibly an eukaryotic alga. Genus includes new species A. constrictus.
Aphralysia anfracta[171] Sp. nov Valid Kopaska-Merkel, Haywick & Keyes Carboniferous (Serpukhovian)  United States
( Alabama)
A tubular calcitic microfossil of uncertain affinities
Arborea denticulata[172] Sp. nov Valid Wang et al. Ediacaran Dengying  China A frondose fossil of uncertain affinities.
Archaeosporites[173] Gen. et sp. nov In press Harper et al. Early Devonian Rhynie chert  United Kingdom A fungus belonging to the group Archaeosporaceae. Genus includes new species A. rhyniensis.
Attenborites[174] Gen. et sp. nov In press Droser et al. Ediacaran Rawnsley  Australia An organism of uncertain phylogenetic placement, described on the basis of a well-defined irregular oval to circular fossil. Genus includes new species A. janeae. Announced in 2018; the final version of the article naming it is not published yet.
Brijax[175] Gen. et sp. nov In press Krings & Harper Devonian Rhynie chert  United Kingdom A probable chytrid fungus. Genus includes new species B. amictus.
Cyanosarcinopsis[176] Gen. et sp. nov In press Calça & Fairchild Permian Assistência  Brazil A chroococcacean. Genus includes new species C. hachiroi.
Dichothallus[177] Gen. et sp. nov In press Naugolnykh Permian (early Kungurian) Philippovian  Russia A brown alga of uncertain phylogenetic placement. Genus includes new species D. divaricatus.
Dongyesphaera[178] Gen. et sp. nov In press Yin et al. Paleoproterozoic Tianpengnao  China An acritarch. Genus includes new species D. tenuispina.
Eoentophysalis hutuoensis[178] Sp. nov In press Yin et al. Paleoproterozoic Hebiancun  China A cyanobacterium belonging to the family Entophysalidaceae
Eosolena magna[170] Sp. nov Valid Li et al. Tonian Shiwangzhuang  China A multicellular, eukaryotic alga.
Flabellophyton obesum[179] Sp. nov Valid Wan et al. Ediacaran  China An organism of uncertain phylogenetic placement, possibly an alga.
Flabellophyton typicum[179] Sp. nov Valid Wan et al. Ediacaran  China An organism of uncertain phylogenetic placement, possibly an alga.
Noffkarkys[180] Gen. et sp. nov In press Retallack & Broz Ediacaran and Cambrian Arumbera
Flathead
Grant Bluff
Jodhpur
Synalds
 Australia
 India
 United Kingdom
 United States
( Montana)
An organism of uncertain phylogenetic placement, a member of the family Charniidae. Genus includes new species N. storaaslii.
Obamus[181] Gen. et sp. nov In press Dzaugis et al. Ediacaran Rawnsley  Australia A torus-shaped organism, similar in gross morphology to some poriferans and benthic cnidarians. Genus includes new species O. coronatus. Announced in 2018; the final version of the article naming it is not published yet.
Ophiocordyceps dominicanus[182] Sp. nov Valid Poinar & Vega Eocene or Miocene Dominican amber  Dominican Republic A fungus, a species of Ophiocordyceps. Announced in 2019; the final version of the article naming it was published in 2020.
Palaeomycus[183] Gen. et sp. nov Valid Poinar Late Cretaceous (Cenomanian) Burmese amber  Myanmar A fungus described on the basis of pycnidia. Genus includes new species P. epallelus. Announced in 2018; the final version of the article naming it was published in 2020.
Paleoplastes[184] Gen. et sp. nov In press Poinar & Vega Late Cretaceous (Cenomanian) Burmese amber  Myanmar A possible dictyostelid. Genus includes new species P. burmanica.
Pararenicola gejiazhuangensis[170] Sp. nov Valid Li et al. Tonian Shiwangzhuang  China A coenocytic alga.
Polycephalomyces baltica[182] Sp. nov Valid Poinar & Vega Eocene Baltic amber  Russia
( Kaliningrad Oblast)
A fungus belonging to the family Ophiocordycipitaceae. Announced in 2019; the final version of the article naming it was published in 2020.
Protoarenicola baishicunensis[170] Sp. nov Valid Li et al. Tonian Shiwangzhuang  China A coenocytic alga.
Protoarenicola shijiacunensis[170] Sp. nov Valid Li et al. Tonian Shiwangzhuang  China A coenocytic alga.
Protographum[185] Gen. et sp. nov Valid Le Renard et al. Early Cretaceous Potomac  United States
( Virginia)
A fungus belonging or related to the family Aulographaceae. Genus includes new species P. luttrellii.
Sinosabellidites huangshanensis[170] Sp. nov Valid Li et al. Tonian Shiwangzhuang  China A coenocytic alga.
Stomiopeltites shangcunicus[186] Sp. nov In press Maslova & Tobias in Maslova et al. Oligocene Shangcun  China A fungus belonging to the family Micropeltidaceae.
Windipila wimmervoecksii[187] Sp. nov In press Krings & Harper Early Devonian Windyfield  United Kingdom A fungal reproductive unit

Research

  • Putative ciliate fossils from the Cryogenian Taishir Formation (Tsagaan Olom Group, Zavkhan Terrane, Mongolia) are reinterpreted as more likely to be algal reproductive structures by Cohen, Vizcaíno & Anderson (2020), who also report the first occurrence of these fossils in the earliest Ediacaran Ol Formation.[188]
  • The discovery of fungal fossils in a 810 to 715 million year old dolomitic shale from the Mbuji-Mayi Supergroup (Democratic Republic of the Congo) is reported by Bonneville et al. (2020), representing the oldest, molecularly identified remains of Fungi reported so far.[189]
  • A study on the developmental biology and phylogenetic relationships of Helicoforamina wenganica is published by Yin et al. (2020).[190]
  • A study on the morphology and affinities of a putative early sponge Namapoikia rietoogensis is published by Mehra et al. (2020), who argue that Namapoikia lacked the physical characteristics expected of an animal.[191]

Trace fossils

  • A study on patterns of ecosystem engineering behaviors across the Permian-Triassic boundary, as indicated by data from trace fossils, and on their possible impact on ecosystem recovery in the benthic environment in the aftermath of the Permian–Triassic extinction event is published by Cribb & Bottjer (2020).[192]
  • New fossil tracks, probably produced by a pterygote insect, are described from the Upper Jurassic-Lower Cretaceous Botucatu Formation (Brazil) by Peixoto et al. (2020), who name a new ichnotaxon Paleohelcura araraquarensis, and evaluate the implications of this finding for the knowledge of ecological relationships within the Botucatu paleodesert.[193]
  • New tetrapod trackways are described from the Tapinocephalus Assemblage Zone of the South African Karoo Basin by Cisneros et al. (2020), who interpret these tracks as produced by small amphibians, and consider them to be evidence that the diversity of Guadalupian amphibians of the Karoo Basin was greater than indicated by body fossils alone.[194]
  • Mujal & Schoch (2020) describe amphibian tracks from the Middle Triassic Erfurt Formation (Germany, probably produced by capitosaurid temnospondyls, and evaluate the implications of this finding for the knowledge of the locomotion and habitats of temnospondyls.[195]
  • Fossil tracks produced by large crocodylomorphs, possibly moving bipedally, are described from the Lower Cretaceous Jinju Formation (South Korea) by Kim et al. (2020), who name a new ichnotaxon Batrachopus grandis.[196]
  • Three sauropod trackways, probably produced by members of Titanosauriformes, are described from the Middle Jurassic (Bathonian) of the Castelbouc cave (France) by Moreau et al. (2020), who name a new ichnotaxon Occitanopodus gandi.[197]
  • New dinosaur tracks, including tracks representing the ichnogenus Deltapodus (probably produced by stegosaurians), are described from the Middle Jurassic of the Isle of Skye (Scotland, United Kingdom) by dePolo et al. (2020), expanding known diversity of dinosaur tracks from this locality.[198]
  • Flamingo-like and anatid-like fossil bird footprints will be described from the Vinchina Formation (Argentina) by Farina et al. (2020), who name new ichnotaxa Phoenicopterichnum lucioi and P. vinchinaensis.[199]
  • Mazin & Pouech (2020) describe non-pterodactyloid pterosaur tracks from the ichnological site known as "the Pterosaur Beach of Crayssac" (Tithonian; south-western France), evaluate the implications of these tracks for the knowledge of the terrestrial capabilities of non-pterodactyloid pterosaurs, and name a new ichnogenus Rhamphichnus.[200]
  • Dinosaur and synapsid tracks are described from the Pliensbachian-Toarcian of the northern main Karoo Basin (South Africa) by Bordy et al. (2020), who interpret these tracks as evidence that dinosaurs and synapsids were among the last inhabitants of the main Karoo Basin some 183 million years ago, and name a new ichnotaxon Afrodelatorrichnus ellenbergeri (likely of ornithischian affinity).[201]
  • New complex burrow system produced by geomyid rodents is described from the Oligocene Chilapa Formation (Mexico) by Guerrero-Arenas, Jiménez-Hidalgo & Genise (2020), who name a new ichnotaxon Yaviichnus iniyooensis, and interpret the complexity of these burrows as probable evidence of some degree of gregariousness of their producers.[202]

History of life in general

  • Liu & Dunn (2020), describe filamentous organic structures preserved among frond-dominated fossil assemblages from the Ediacaran of Newfoundland (Canada), including filaments that appear to directly connect individual specimens of one rangeomorph taxon, and interpret this finding as possible evidence that Ediacaran frondose taxa were clonal.[203]
  • A study on the age of the Ediacaran biota from the Conception and St. John’s Groups at Mistaken Point Ecological Reserve (Newfoundland, Canada) is published by Matthews et al. (2020).[204]
  • Approximately 563-million-year-old Ediacaran biota is reported from the Itajaí Basin (Brazil) by Becker-Kerber et al. (2020), representing the first record of Ediacaran macrofossils from Gondwana in deposits of similar age to the Avalon biota.[205]
  • A study on biomarkers from Ediacaran sediments in the White Sea area is published by Bobrovskiy et al. (2020), who interpret their findings as indicating that eukaryotic algae were abundant among the food sources available for the Ediacaran biota.[206]
  • A study aiming to quantify changes of regional-scale diversity in marine fossils across time and space throughout the Phanerozoic is published by Close et al. (2020).[207]
  • A study on the timing of known diversification and extinction events from Cambrian to Triassic, based on data from 11,000 marine fossil species, is published by Fan et al. (2020).[208]
  • The discovery of a new, exceptionally-preserved Cambrian biota, with fossils belonging to multiple phyla, is reported from the Guzhangian Longha Formation (Yunnan, China) by Peng et al. (2020).[209]
  • A study on changes in body size in skeletal animals from the Siberian Platform through the early Cambrian is published by Zhuravlev & Wood (2020).[210]
  • A study on the relationship between body size and extinction risk in the marine fossil record across the past 485 million years is published by Payne & Heim (2020).[211]
  • A study on the diversification rates of Ordovician animals living on hard substrates, aiming to determine when they experienced their greatest origination rates, is published by Franeck & Liow (2020).[212]
  • New information on the biotic composition of the Silurian Waukesha Lagerstätte (Wisconsin, United States) is presented by Wendruff et al. (2020), who report a biodiversity far richer than previously reported, and explore the taphonomic history of the fossils of this biota.[213]
  • A study on the diversity dynamics of the marine brachiopods, bivalves and gastropods throughout the Late Palaeozoic Ice Age is published by Seuss, Roden & Kocsis (2020).[214]
  • A study comparing the chemistry of fossil soft tissues of invertebrates and vertebrates from the Carboniferous Mazon Creek fossil beds (Illinois, United States) is published by McCoy et al. (2020), who report Tullimonstrum gregarium as grouping with vertebrates in their analysis.[215]
  • A study on the ages of known early–middle Permian tetrapod-bearing geological formations, as indicated by Bayesian tip dating methods, is published by Brocklehurst (2020), who interprets his findings as supporting the occurrence of the Olson's Extinction.[216]
  • A study on global infaunal response to the Permian–Triassic extinction event, as indicated by data from trace fossils, is published by Luo et al. (2020).[217]
  • A study on changes of marine latitudinal diversity gradient caused by the Permian–Triassic mass extinction is published by Song et al. (2020).[218]
  • Description of new fossil material of Late Triassic tetrapods from the Hoyada del Cerro Las Lajas site (Ischigualasto Formation, Argentina), and a study on the age of tetrapod fossils from this site (including fossils of Pisanosaurus mertii) and their implications for the knowledge of the Late Triassic tetrapod evolution, is published by Desojo et al. (2020).[219]
  • A study on the dynamics of the Adamanian/Revueltian faunal turnover, based on fossil data from the Petrified Forest National Park (Arizona, United States), is published by Hayes et al. (2020).[220]
  • Wignall & Atkinson (2020) argue that the Triassic–Jurassic extinction event can be resolved into two distinct, short-lived extinction pulses separated by a several hundred-thousand-year interlude phase.[221]
  • A study on changes in shell size of marine bivalves and brachiopods from the Iberian Basin (Spain) across the Early Toarcian Oceanic Anoxic Event, aiming to determine the role of temperature for changes in body size of bivalves and brachiopods, is published by Piazza, Ullmann & Aberhan (2020).[222]
  • Foster, Pagnac & Hunt-Foster (2020) describe the Late Jurassic biota from the Little Houston Quarry in the Black Hills of Wyoming, including the vertebrate fauna which is the second-most diverse in the entire Morrison Formation and the most diverse north of Como Bluff.[223]
  • A study on the age of the Huajiying Formation (China) and its implications for the knowledge of the timing of appearance and duration of the Jehol Biota is published by Yang et al. (2020).[224]
  • A study on the age of the biota from the Cretaceous Burmese amber from Hkamti is published by Xing & Qiu (2020).[225]
  • A study on extinction patterns of marine vertebrates during the last 20 million years of the Late Cretaceous, as indicated by fossils from northern Gulf of Mexico, is published by Ikejiri, Lu & Zhang (2020), who report evidence of two separate extinction events: one in the Campanian, and one at the end of the Maastrichtian.[226]
  • Rodríguez-Tovar et al. (2020) present evidence from trace fossils from the Chicxulub crater indicating that full recovery of the macrobenthic biota from this area was rapid, with the establishment of a well-developed tiered community within ~700 thousand years.[227]
  • A study on the impact of the early Cenozoic hyperthermal events on shallow marine benthic communities, based on data from fossils from the Gulf Coastal Plain, is published by Foster et al. (2020).[228]
  • A study on the geology and fauna (including hominins) of the new Mille-Logya site (Afar, Ethiopia) dated to between 2.914 and 2.443 Ma is published by Zeresenay Alemseged et al. (2020), who evaluate the implications of this site for the knowledge of how hominins and other fauna responded to environmental changes during this period.[229]
  • A new, diverse megafauna assemblage that suffered extinction sometime after 40,100 (±1700) years ago is reported from the South Walker Creek fossil deposits (Queensland, Australia) by Hocknull et al. (2020), who evaluate the implications of this assemblage for prevailing megafauna extinction hypotheses for Sahul.[230]
  • A study on ancient DNA of vertebrates and plants recovered from fossils and sediment from Hall’s Cave (Edwards Plateau, Texas, United States), evaluating its implications for the knowledge of the climatic fluctuations from the Pleistocene to the Holocene on the local ecosystem, is published by Seersholm et al. (2020).[231]
  • A study on the phylogenetic relationships of early amniotes, recovering Parareptilia and Varanopidae as nested within Diapsida, will be published by Ford & Benson (2020), who name a new clade Neoreptilia.[232]
  • Regional-scale diversity patterns for terrestrial tetrapods throughout their entire Phanerozoic evolutionary history are presented by Close et al. (2020), who attempt to determine how informative the fossil record is about true global paleodiversity.[233]
  • A study on the impact of the appearance and evolution of herbivorous tetrapods on the evolution of land plants from the Carboniferous to the Early Triassic is published by Brocklehurst, Kammerer & Benson (2020).[234]
  • A study the terrestrial and marine fossil record of Late Permian to Late Triassic tetrapods, comparing species-level tetrapod biodiversity across latitudinal bins, is published by Allen et al. (2020).[235]
  • In a study published by Chiarenza et al. (2020)[236][237] the two main hypotheses for the mass extinction (the Daccan Traps and the Chicxulub impact) were evaluated using Earth System and Ecologial modelling, confirming that the asteroid impact was the main driver of this extinction while the volcanism might have boosted the recovery instead.

Other research

  • Evidence indicating that the Great Oxidation Event predated Paleoproterozoic glaciation in Russia and snowball Earth deposits in South Africa is presented by Warke et al. (2020), who argue that their findings preclude hypotheses of Earth’s oxygenation in which global glaciation preceded or caused the evolution of oxygenic photosynthesis.[238]
  • A study on the timing of the onset and termination of the Shuram carbon isotope excursion is published by Rooney et al. (2020), who argue that this excursion was divorced from the rise of the earliest preserved animal ecosystems.[239]
  • A study on the causes of the Late Ordovician mass extinction, based on data from the Ordovician-Silurian boundary stratotype (Dob's Linn, Scotland), is published by Bond & Grasby (2020), who interpret their findings as evidence that this extinction event was caused by volcanism, warming and anoxia.[240]
  • Evidence of wildfires at the FrasnianFamennian boundary is reported from Upper Devonian sections from western New York (United States) by Liu et al. (2020), who also provide an estimate of atmospheric O2 levels at this interval, and evaluate their implications for the knowledge of causes of the Late Devonian extinction.[241]
  • A study on the timing of the environmental changes associated with the Kellwasser events is published by Da Silva et al. (2020).[242]
  • Evidence of anomalously high mercury concentration in marine deposits encompassing the Hangenberg event from Carnic Alps (Italy and Austria) is presented by Rakociński et al. (2020), who argue that methylmercury poisoning in otherwise anoxic seas, caused by extensive volcanic activity, could be a direct kill mechanism of the end-Devonian Hangenberg extinction.[243]
  • A study on fossil plant spores with malformed sculpture and pigmented walls, recovered from terrestrial Devonian-Carboniferous boundary sections from East Greenland, is published by Marshall et al. (2020), who interpret their findings as evidence that the terrestrial mass extinction at the Devonian-Carboniferous boundary coincided with elevated UV-B radiation indicatice of ozone layer reduction.[244]
  • Fields et al. (2020) attempt to determine whether the dramatic drop in stratospheric ozone coinciding with the end-Devonian extinction events was caused by a nearby supernova explosion.[245]
  • A study on the age of a pristine ash-fall deposit in the Karoo Lystrosaurus Assemblage Zone (South Africa) is published by Gastaldo et al. (2020), who report that turnover from the Daptocephalus Assemblage Zone to Lystrosaurus AZ in this basin occurred over 300 ka before the end-Permian marine event, and interpret their findings as refuting the concurrentness of turnovers in terrestrial and marine ecosystems at the end of the Permian.[246]
  • A study evaluating the contribution of loss of ecosystems on land and consequent massive terrestrial biomass oxidation to atmosphere–ocean biogeochemistry at the Permian–Triassic boundary is published by Dal Corso et al. (2020).[247]
  • A study aiming to determine the mechanism that drove vast stretches of the ocean to an anoxic state during the Permian–Triassic extinction event is published by Schobben et al. (2020).[248]
  • A study on variations of ~10-Myr scale monsoon dynamics during the early Mesozoic, and on their impact on climate and ecosystem dynamics (including the dispersal of early dinosaurs), is published by Ikeda, Ozaki & Legrand (2020).[249]
  • New geochronologic and paleoclimatic data from Carnian-aged strata in the Ischigualasto-Villa Unión Basin (Argentina) is presented by Mancuso et al. (2020), who interpret their findings as indicating that the Carnian Pluvial Event interval in western Gondwana was warmer and more humid than periods before or after this interval, confirming that the CPE was a global event.[250]
  • A study on the age of the top of the Moenkopi Formation, the lower Blue Mesa Member, and the lower and upper Sonsela Member of the Chinle Formation is published by Rasmussen et al. (2020), who argue that the biotic turnover preserved in the mid-Sonsela Member at the Petrified Forest National Park was a mid-Norian event.[251]
  • A study on ocean temperatures during the Triassic–Jurassic extinction event is published by Petryshyn et al. (2020), who report no evidence for short-term cooling or initial warming across the 1-80,000 years of the extinction event.[252]
  • A review of the geology, paleoecology and taxonomic status of the fauna from the Cretaceous Kem Kem Beds of Morocco is published by Ibrahim et al. (2020).[253]
  • Klages et al. (2020) report evidence from the West Antarctic shelf indicating the occurrence of a temperate lowland rainforest environment at a palaeolatitude of about 82° S during the Late Cretaceous (TuronianSantonian).[254]
  • A study on the timing of a volcanic outgassing at the end of the Cretaceous, and on its implications for the knowledge of causes of the Cretaceous-Paleogene mass extinction, is published by Hull et al. (2020).[255]
  • A study on paleosols from the eastern edge of the Deccan Volcanic Province (central India), evaluating their implications for reconstructions of climate and terrestrial environments of India before and after the Cretaceous–Paleogene extinction event and for the knowledge of causes of this extinction event, is published by Dzombak et al. (2020).[256]
  • A study on the origin, recovery, and development of microbial life in the Chicxulub crater after the impact at the end of the Cretaceous, and on the environmental conditions in the crater up to ∼4 million years after the Cretaceous–Paleogene extinction event, is published by Schaefer et al. (2020).[257]
  • A study on freshwater fauna and flora found in a sediment sample from the Yuka mammoth carcass, evaluating its implications for reconstructions of the waterbody type where the mammoth was preserved and for the knowledge of the nature of the waterbodies that existed in Beringia during the MIS3 climatic optimum, is published by Neretina et al. (2020).[258]
  • Partial dentary of a juvenile saurornitholestine dromaeosaurid is described from the Upper Cretaceous Prince Creek Formation (Alaska, United States) by Chiarenza et al. (2020), representing the first confirmed non-dental fossil specimen of a member of Dromaeosauridae in the Arctic.[259]
  • Van Neer et al. (2020) report faunal remains from the Takarkori rock shelter in the Acacus Mountains region (Libya), and evaluate their implications for the knowledge of the climate and hydrography of the Sahara throughout the Holocene.[260]
  • New Mesozoic and Paleogene amber occurrences, preserving diverse inclusions of arthropods, plants and fungi, are reported from Australia and New Zealand by Stilwell et al. (2020).[261]
gollark: Well, I was considering a JSON validator.
gollark: If by immediately you mean next year, yes.
gollark: Interesting.
gollark: Iff Riemann hypothesis.
gollark: Except with two of the Ds highly antimemetic.

References

  1. Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. Baba Senowbari-Daryan; Franz T. Fürsich; Koorosch Rashidi (2020). "Sponges from the Jurassic of the Shotori Mountains Part III. Endostoma Roemer, Eudea Lamouroux, Pareudea Étallon, Preperonidella Finks & Rigby, Polyendostoma Roemer, Seriespongia n. gen., and Iniquispongia n. gen". Revue de Paléobiologie, Genève. 39 (1): 265–301. doi:10.5281/zenodo.3936171.
  3. Joseph P. Botting; Yves Candela; Vicen Carrió; William R. B. Crighton (2020). "A new hexactinellid sponge from the Silurian of the Pentland Hills (Scotland) with similarities to extant rossellids". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (1): 17–25. doi:10.1017/S1755691019000045.
  4. Joseph P. Botting; Dorte Janussen; Yuandong Zhang; Lucy A. Muir (2020). "Exceptional preservation of two new early rossellid sponges: the dominant species in the Hirnantian (Late Ordovician) Anji Biota of China". Journal of the Geological Society. in press. doi:10.1144/jgs2020-002.
  5. Rob W.M. Van Soest; John N.A. Hooper; Peter J. Butler (2020). "Every sponge its own name: removing Porifera homonyms". Zootaxa. 4745 (1): 1–93. doi:10.11646/zootaxa.4745.1.1 (inactive 2020-03-06). PMID 32230307.
  6. Mohamed Gameil; Abdelbaset S. El-Sorogy; Khaled Al-Kahtany (2020). "Solitary corals of the Campanian Hajajah Limestone Member, Aruma Formation, Central Saudi Arabia". Historical Biology: An International Journal of Paleobiology. 32 (1): 1–17. doi:10.1080/08912963.2018.1461217.
  7. Guangxu Wang; Ian G. Percival; Yong Yi Zhen (2020). "The youngest Ordovician (latest Katian) coral fauna from eastern Australia, in the uppermost Malachis Hill Formation of central New South Wales". Alcheringa: An Australasian Journal of Palaeontology. Online edition. doi:10.1080/03115518.2020.1747540.
  8. Heyo Van Iten; Bertrand Lefebvre (2020). "Conulariids from the Lower Ordovician of the southern Montagne Noire, France". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00728.2020.
  9. Xing Wang; Jean Vannier; Xiaoguang Yang; Shin Kubota; Qiang Ou; Xiaoyong Yao; Kentaro Uesugi; Osamu Sasaki; Tsuyoshi Komiya; Jian Han (2020). "An intermediate type of medusa from the early Cambrian Kuanchuanpu Formation, South China". Palaeontology. Online edition. doi:10.1111/pala.12483.
  10. Bogusław Kołodziej (2020). "A new coral genus with prominent, ramified main septum (Aptian, Tanzania)". Ameghiniana. Online edition. doi:10.5710/AMGH.26.06.2020.3341.
  11. Julien Denayer; Shaochun Xu; Eddy Poty; Markus Aretz (2020). "Taxonomy and evolution of late Tournaisian and Viséan (early Carboniferous) Heterostrotioninae (Rugosa, Anthozoa) from SE China". Journal of Systematic Palaeontology. 18 (10): 843–872. doi:10.1080/14772019.2019.1689191.
  12. Dieter Weyer; Jean-Claude Rohart (2020). "Neosyringaxon Jia in Jia et al., 1977 (Anthozoa, Rugosa) in the Middle and Late Devonian of Europe and North America". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (3): 283–296. doi:10.1127/njgpa/2020/0887.
  13. Wei-hua Liao; Kun Liang (2020). "Givetian (Devonian) rugose corals from Wangyou, Huishui, Guizhou (2)". Acta Palaeontologica Sinica. 59 (2). doi:10.19800/j.cnki.aps.2020.02.05.
  14. Chang-Min Yu; Huu Hung Nguyen; Wen-Kun Qie; Wen Guo; Ba Hung Nguyen (2020). "Lower Emsian biostratigraphy and event stratigraphy of Ha Giang Province, northern Vietnam". Palaeoworld. in press. doi:10.1016/j.palwor.2020.04.001.
  15. Sergio Rodríguez; Ian D. Somerville; Pedro Cózar; Javier Sanz-López; Ismael Coronado; Felipe González; Ismail Said; Mohamed El Houicha (2020). "A new early Visean coral assemblage from Azrou-Khenifra Basin, central Morocco and palaeobiogeographic implications". Journal of Palaeogeography. 9: Article number 5. doi:10.1186/s42501-019-0051-5.
  16. Andrej Ernst (2020). "Anastomopora (Fenestrata, Bryozoa) from the Middle Devonian of the Rhenish Massif, Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 297 (1): 11–26. doi:10.1127/njgpa/2020/0911.
  17. Andrej Ernst; Ali Bahrami; Ayesheh Parast (2020). "Early Famennian bryozoan fauna from the Baqer-abad section, northeast Isfahan, central Iran". Palaeobiodiversity and Palaeoenvironments. Online edition. doi:10.1007/s12549-020-00417-4.
  18. Paul D. Taylor (2020). "Rare bryozoans from the Gault Clay Formation (Lower Cretaceous, upper Albian) of Kent, England". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 296 (1–2): 201–209. doi:10.1127/njgpa/2020/0903.
  19. Anna V. Koromyslova; Vladimir B. Seltser (2020). "Early Maastrichtian cheilostome bryozoans from the middle Volga River region". PalZ. in press. doi:10.1007/s12542-019-00509-3.
  20. Andrej Ernst; Mohammad N. Gorgij (2020). "Carboniferous bryozoans from the Kalmard area, central Iran". PalZ. in press. doi:10.1007/s12542-019-00502-w.
  21. O. P. Mesentseva; Yu. V. Udodov (2020). "New species of the genus Filites Počta in Barrande (Bryozoa) from the Emsian (Lower Devonian) of Salair". Paleontological Journal. 54 (3): 255–262. doi:10.1134/S0031030120030090.
  22. Emanuela Di Martino; Paul D. Taylor; Dennis P. Gordon (2020). "Erect bifoliate species of Microporella (Bryozoa, Cheilostomata), fossil and modern". European Journal of Taxonomy. 678: 1–31. doi:10.5852/ejt.2020.678.
  23. Andrej Ernst; Mahmoud Kora; Heba El-Desouky; Hans-Georg Herbig; Patrick N. Wyse Jackson (2020). "Stenolaemate bryozoans from the Carboniferous of Egypt". Journal of African Earth Sciences. 165: Article 103811. doi:10.1016/j.jafrearsci.2020.103811.
  24. B. Gudveig Baarli (2020). "Survival and recovery atrypid fauna following the terminal Ordovician extinction, the Atrypinae: central Oslo Region, Norway". Historical Biology: An International Journal of Paleobiology. in press: 1–38. doi:10.1080/08912963.2019.1620228.
  25. Danièle Gaspard; Sylvain Charbonnier (2020). "The debated question of asymmetrical rhynchonellids (Brachiopoda, Rhynchonellida): examples from the Late Cretaceous of Western Europe". BSGF - Earth Sciences Bulletin. 191: Article number 1. doi:10.1051/bsgf/2019016.
  26. Marcello Guimarães Simões; Jacqueline Peixoto Neves; Arturo César Taboada; Maria Alejandra Pagani; Filipe Giovanini Varejão; Mário Luis Assine (2020). "Macroinvertebrates of the Capivari marine bed, late Paleozoic glacial Itararé Group, northeast Paraná Basin, Brazil: Paleoenvironmental and paleogeographic implications". Journal of South American Earth Sciences. 98: Article 102433. doi:10.1016/j.jsames.2019.102433.
  27. Jisuo Jin; Robert B. Blodgett (2020). "Late Ordovician brachiopods from east-central Alaska, northwestern margin of Laurentia". Journal of Paleontology. 94 (4): 637–652. doi:10.1017/jpa.2020.10.
  28. Fernando J. Lavié; Juan L. Benedetto (2020). "First lingulate brachiopods from the Ordovician volcano-sedimentary rocks of the Famatina Range, western Argentina". PalZ. 94 (2): 295–309. doi:10.1007/s12542-019-00496-5.
  29. Valeryi V. Baranov; Li Qiao; Robert B. Blodgett (2020). "Givetian stringocephalid brachiopods from eastern Yunnan of Southwest China with notes on global distribution of the family Stringocephalidae". Palaeoworld. in press. doi:10.1016/j.palwor.2020.03.005.
  30. Mélani Berrocal-Casero; Fernando Barroso-Barcenilla; Fernando García Joral (2020). "Coniacian (Upper Cretaceous) rhynchonellides from northern Spain: taxonomy and palaeobiogeography". Cretaceous Research. 106: Article 104216. doi:10.1016/j.cretres.2019.104216.
  31. Mélani Berrocal-Casero; Fernando García Joral; Fernando Barroso-Barcenilla (2020). "The evolution of asymmetry in Upper Cretaceous Cyclothyris (Brachiopoda, Rhynchonellida)". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2020.1715390.
  32. V. V. Baranov (2020). "New rhynchonellids and atrypids (Brachiopoda) from the Lower Devonian deposits of Northeast Eurasia". Paleontological Journal. 54 (3): 263–272. doi:10.1134/S003103012003003X.
  33. T. N. Smirnova; E. A. Zhegallo (2020). "First finds of Elliptoglossa Cooper (Brachiopoda, Lingulida) in the Upper Devonian of the Volga–Ural region; microstructure of the protegular and adult shell regions". Paleontological Journal. 54 (4): 347–353. doi:10.1134/S0031030120040127.
  34. Alfréd Dulai; Fritz von der Hocht (2020). "Upper Oligocene brachiopods from NW Germany, with description of a new Platidiinae genus, Germanoplatidia n. gen". Rivista Italiana di Paleontologia e Stratigrafia. 126 (1): 223–248. doi:10.13130/2039-4942/13060 (inactive 2020-03-06).
  35. Howard R. Feldman; Barbara V. Radulović; Vladan J. Radulović; Fayez Ahmad (2020). "Middle Jurassic terebratulide brachiopods from the Jordan Valley (northwestern Jordan)". Historical Biology: An International Journal of Paleobiology. in press: 1–17. doi:10.1080/08912963.2019.1625347.
  36. Desmond L. Strusz (2020). "Pentamerid Brachiopods from the Lower Silurian (Wenlock) Canberra Formation, A.C.T., Australia". Proceedings of the Linnean Society of New South Wales. 142: 15–28.
  37. Howard R. Feldman; Barbara V. Radulović; Vladan J. Radulović; Fayez Ahmad (2020). "Callovian (Middle Jurassic) terebratulide brachiopods from the Jordan Valley (northwestern Jordan)". Historical Biology: An International Journal of Paleobiology. in press: 1–13. doi:10.1080/08912963.2019.1677643.
  38. Gustavo G. Voldman; M. Luisa Martínez Chacón; Christopher J. Duffin; Luis Pedro Fernández; Juan L. Alonso (2020). "Pennsylvanian brachiopod, fish and conodont faunas from the Caliza Masiva (San Emiliano Formation) at the Mina Profunda area, Cantabrian Zone, NW Spain". Geobios. 59: 91–106. doi:10.1016/j.geobios.2020.03.004.
  39. Zhifei Zhang; Lars E. Holmer; Yue Liang; Yanlong Chen; Xiaolin Duan (2020). "The oldest "Lingulellotreta" (Lingulata, Brachiopoda) from China and its phylogenetic significance: integrating new material from the Cambrian Stage 3–4 Lagerstätten in eastern Yunnan, South China". Journal of Systematic Palaeontology. 18 (11): 945–973. doi:10.1080/14772019.2019.1698669.
  40. José Amet Rivaz Hernández (2020). "Linnaeocaninella nomen novum for the Middle Permian fossil Caninella Liang, 1990 (Brachiopoda: Productida: Richthofenidae), preoccupied by Caninella Gorsky, 1938 (Cnidaria: Anthozoa: Bothrophyllidae)". Zootaxa. 4732 (2): 335–336. doi:10.11646/zootaxa.4732.2.9. PMID 32230266.
  41. Zhifei Zhang; Luke C. Strotz; Timothy P. Topper; Feiyang Chen; Yanlong Chen; Yue Liang; Zhiliang Zhang; Christian B. Skovsted; Glenn A. Brock (2020). "An encrusting kleptoparasite-host interaction from the early Cambrian". Nature Communications. 11 (1): Article number 2625. doi:10.1038/s41467-020-16332-3. PMC 7266813. PMID 32488075.
  42. Huiting Wu; Yang Zhang; Thomas L. Stubbs; Jingqi Liu; Yuanlin Sun (2020). "A new Changhsingian (Lopingian) brachiopod fauna of the shallow‐water clastic shelf facies from Fujian Province, south‐eastern China". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1318.
  43. Zhiliang Zhang; Lars E. Holmer; Feiyang Chen; Glenn A. Brock (2020). "Ontogeny and evolutionary significance of a new acrotretide brachiopod genus from Cambrian Series 2 of South China". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2020.1794991.
  44. Bing Pan; Christian B. Skovsted; Glenn A. Brock; Timothy P. Topper; Lars E. Holmer; Luo-Yang Li; Guo-Xiang Li (2020). "Early Cambrian organophosphatic brachiopods from the Xinji Formation, at Shuiyu section, Shanxi Province, North China". Palaeoworld. in press. doi:10.1016/j.palwor.2019.07.001.
  45. Thomas M. Claybourn; Christian B. Skovsted; Lars E. Holmer; Bing Pan; Paul M. Myrow; Timothy P. Topper; Glenn A. Brock (2020). "Brachiopods from the Byrd Group (Cambrian Series 2, Stage 4) Central Transantarctic Mountains, East Antarctica: biostratigraphy, phylogeny and systematics". Papers in Palaeontology. 6 (3): 349–383. doi:10.1002/spp2.1295.
  46. Lars E. Holmer; Leonid E. Popov; Mansoureh Ghobadi Pour; Inna A. Klishevich; Yue Liang; Zhifei Zhang (2020). "Linguliform brachiopods from the Cambrian (Guzhangian) Karpinsk Formation of Novaya Zemlya". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1314.
  47. V. I. Makoshin (2020). "A new species of the genus Verchojania Abramov (Brachiopoda, Productida) from the Upper Carboniferous of the northern Verkhoyansk Region". Paleontological Journal. 54 (2): 111–116. doi:10.1134/S0031030120020082.
  48. Adam S. Osborn; Roger W. Portell; Rich Mooi (2020). "Neogene echinoids of Florida" (PDF). Bulletin of the Florida Museum of Natural History. 57 (3): 237–469.
  49. Selina R. Cole; David F. Wright; William I. Ausich; Joseph M. Koniecki (2020). "Paleocommunity composition, relative abundance, and new camerate crinoids from the Brechin Lagerstätte (Upper Ordovician)". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.32.
  50. Daniel B. Blake; Forest J. Gahn; Thomas E. Guensburg (2020). "Two new early Asteroidea (Echinodermata) and early asteroid evolution". Journal of Paleontology. 94 (4): 734–747. doi:10.1017/jpa.2020.7.
  51. Timothy A. M. Ewin; Andrew S. Gale (2020). "Asteroids (Echinodermata) from the Barremian (Lower Cretaceous) of the Agadir Basin, west Morocco". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.20.
  52. Daniel B. Blake; James Sprinkle (2020). "Arceoaster hintei n. gen. n. sp., a late Silurian homeomorphic asteroid (Echinodermata, Hudsonasteridae)". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.57.
  53. Joachim Pabst; Hans-Georg Herbig (2020). "An Upper Mississippian echinoderm microfauna from the Genicera Formation of northern León (Carboniferous, Cantabrian Mountains, N Spain)". Spanish Journal of Palaeontology. 35 (1): 47–76. doi:10.7203/sjp.35.1.17116.
  54. Andy Gale (2020). "Asteroids (Echinodermata) from the Crackers Member (lower Aptian, Deshayesites forbesi Zone) on the Isle of Wight (UK), with a revision of fossil Pseudarchasteridae". Proceedings of the Geologists' Association. in press. doi:10.1016/j.pgeola.2019.07.002.
  55. Miguel A. Torres-Martínez; Rafael Villanueva-Olea; Francisco Sour-Tovar (2020). "Columnar ossicles of Permian crinoids, including two new genera, from the Grupera Formation (Asselian–Sakmarian) of Chiapas, Mexico". Boletín de la Sociedad Geológica Mexicana. 72 (2): Article A280819. doi:10.18268/BSGM2020v72n2a280819.
  56. Andrew Scott Gale (2020). "Roveacrinidae (Crinoidea, Articulata) from the Cenomanian and Turonian of North Africa (Agadir Basin and Anti-Atlas, Morocco, and central Tunisia): biostratigraphy and taxonomy". Acta Geologica Polonica. in press. doi:10.24425/agp.2019.126458.
  57. Samuel Zamora; James Sprinkle; Colin D. Sumrall (2020). "A revaluation of rhipidocystid echinoderms based on a new flattened blastozoan from the Upper Ordovician of Maryland, USA". Acta Palaeontologica Polonica. 65. doi:10.4202/app.00718.2019.
  58. Samuel Zamora; Elise Nardin; Jorge Esteve; Juan Carlos Gutiérrez-Marco (2020). "New rhombiferan blastozoans (Echinodermata) from the Late Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.10. doi:10.1144/SP485.10.
  59. Joseph P. Botting (2020). "Late Ordovician crinoids from the Anti-Atlas region of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.4. doi:10.1144/SP485.4.
  60. Fiona E. Fearnhead; Stephen K. Donovan; Joseph P. Botting; Lucy A. Muir (2020). "A lower Silurian (Llandovery) diplobathrid crinoid (Camerata) from mid-Wales". Geological Magazine. 157 (7): 1176–1180. doi:10.1017/S0016756819001511.
  61. Enrico Borghi; Paolo Stara (2020). "Revision of the genus Heterobrissus (Echinoidea), with a new species from Sardinia, and redefinition of Heterobrissus niasicus (Doderlein, 1901) in Echinopneustes n. gen". Biodiversity Journal. 11 (1): 263–287. doi:10.31396/Biodiv.Jour.2020.11.1.263-287.
  62. Frank Stiller (2020). "Sea lilies of the genera Holocrinus, Tollmannicrinus, and Eckicrinus (order Holocrinida) from the Anisian (Middle Triassic) of Qingyan, south-western China". PalZ. in press. doi:10.1007/s12542-019-00505-7.
  63. Darío G. Lazo; Graciela S. Bressan; Ernesto Schwarz; Gonzalo D. Veiga (2020). "First articulated stalked crinoids from the Mesozoic of South America: two new species from the Lower Cretaceous of the Neuquén Basin, west-central Argentina". Journal of Paleontology. 94 (4): 716–733. doi:10.1017/jpa.2020.15.
  64. Malton Carvalho Fraga; Cristina Silveira Vega (2020). "Asterozoans from the Devonian of the Paraná Basin, south Brazil". Journal of South American Earth Sciences. 97: Article 102398. doi:10.1016/j.jsames.2019.102398.
  65. Lea D. Numberger-Thuy; Ben Thuy (2020). "A new bathyal ophiacanthid brittle star (Ophiuroidea: Ophiacanthidae) with Caribbean affinities from the Plio-Pleistocene of the Mediterranean". Zootaxa. 4820 (1): 19–30. doi:10.11646/zootaxa.4820.1.2.
  66. Colin D. Sumrall; Samuel Zamora (2020). "New Upper Ordovician edrioasteroids from Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.6. doi:10.1144/SP485.6.
  67. Graeme R. Stevens (2020). "Paragonaster felli n. sp. (Echinodermata, Asterozoa) and a record of an Ophiuroid from the Early Cretaceous of New Zealand". New Zealand Journal of Geology and Geophysics. in press. doi:10.1080/00288306.2020.1767163.
  68. Andrew Scott Gale; Jenny Marie Rashall; William James Kennedy; Frank Koch Holterhoff (2020). "The microcrinoid taxonomy, biostratigraphy and correlation of the upper Fredericksburg and lower Washita groups (Cretaceous, middle Albian to lower Cenomanian) of northern Texas and southern Oklahoma, USA". Acta Geologica Polonica. in press. doi:10.24425/agp.2020.132256.
  69. Daniel B. Blake; Joseph Koniecki (2020). "Taxonomy and functional morphology of the Urasterellidae (Paleozoic Asteroidea, Echinodermata)". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.42.
  70. Marine Fau; Loïc Villier; Timothy A. M. Ewin; Andrew S. Gale (2020). "A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov". Fossil Record. 23 (2): 141–149. doi:10.5194/fr-23-141-2020.
  71. Ann W. Harris; Frank R. Ettensohn; Jill E. Carnahan-Jarvis (2020). "Paleoecology and taxonomy of Schoenaster carterensis, a new encrinasterid ophiuroid species from the Upper Mississippian (Chesterian) Slade Formation of northeastern Kentucky, USA". Journal of Paleontology. 94 (3): 531–547. doi:10.1017/jpa.2019.107.
  72. Alejandra Martínez-Melo; Jesús Alvarado-Ortega (2020). "Vaquerosella perrillatae sp. nov.: A Miocene species of Echinarachniidae (Echinodermata: Clypeasteroida) from Baja California Sur, Mexico". Palaeontologia Electronica. 23 (1): Article number 23(1):a14. doi:10.26879/1040.
  73. Bradley Deline; Jeffrey R. Thompson; Nicholas S. Smith; Samuel Zamora; Imran A. Rahman; Sarah L. Sheffield; William I. Ausich; Thomas W. Kammer; Colin D. Sumrall (2020). "Evolution and development at the origin of a phylum". Current Biology. 30 (9): 1672–1679.e3. doi:10.1016/j.cub.2020.02.054. PMID 32197083.
  74. Elizabeth G. Clark; John R. Hutchinson; Peter J. Bishop; Derek E. G. Briggs (2020). "Arm waving in stylophoran echinoderms: three-dimensional mobility analysis illuminates cornute locomotion". Royal Society Open Science. 7 (6): Article ID 200191. doi:10.1098/rsos.200191. PMC 7353985. PMID 32742688.
  75. Samuel Zamora; Colin Sumrall (2020). "Hexedriocystis, an aberrant echinoderm from the Upper Ordovician of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485–2017–213. doi:10.1144/SP485-2017-213.
  76. Adriane R. Lam; Sarah L. Sheffield; Nicholas J. Matzke (2020). "Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event". Paleobiology. in press. doi:10.1017/pab.2020.24.
  77. Jennifer E. Bauer (2020). "Paleobiogeography, paleoecology, diversity, and speciation patterns in the Eublastoidea (Blastozoa: Echinodermata)". Paleobiology. in press. doi:10.1017/pab.2020.27.
  78. T.J. Suttner; E. Kido; Ya. Ariunchimeg; G. Sersmaa; J.A. Waters; S.K. Carmichael; C.J. Batchelor; M. Ariuntogos; A. Hušková; L. Slavík; J.I. Valenzuela-Ríos; J.-C. Liao; Y.A. Gatovsky (2020). "Conodonts from Late Devonian island arc settings (Baruunhuurai Terrane, western Mongolia)". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109099. doi:10.1016/j.palaeo.2019.03.001.
  79. Jerzy Dzik (2020). "Ordovician conodonts and the Tornquist Lineament". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109157. doi:10.1016/j.palaeo.2019.04.013.
  80. Yong Yi Zhen (2020). "Revision of the Darriwilian (Middle Ordovician) conodonts documented by Watson (1988) from subsurface Canning Basin, Western Australia". Alcheringa: An Australasian Journal of Palaeontology. in press. doi:10.1080/03115518.2020.1737227.
  81. Jian-Feng Lu; Peter Königshof (2020). "Eifelian (Middle Devonian) species of Bipennatus from the Beiliu Formation at Nalai, South China". Palaeoworld. in press. doi:10.1016/j.palwor.2019.12.002.
  82. Keyi Hu; Nicholas J. Hogancamp; Lance L. Lambert; Yuping Qi; Jitao Chen (2020). "Evolution of the conodont Diplognathodus ellesmerensis from D. benderi sp. nov. at the Bashkirian–Moscovian (lower–middle Pennsylvanian) boundary in South China". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1309.
  83. Yong Yi Zhen; Robert S. Nicoll; Leon S. Normore; Ian G. Percival; John R. Laurie; Louisa M. Dent (2020). "Ordovician conodont biostratigraphy of the Willara Formation in the Canning Basin, Western Australia". Palaeoworld. in press. doi:10.1016/j.palwor.2020.06.006.
  84. Yuping Qi; James E. Barrick; Nicholas J. Hogancamp; Jitao Chen; Keyi Hu; Qiulai Wang; Xiangdong Wang (2020). "Conodont faunas across the Kasimovian–Gzhelian boundary (Late Pennsylvanian) in South China and implications for the selection of the stratotype for the base of the global Gzhelian Stage". Papers in Palaeontology. 6 (3): 439–484. doi:10.1002/spp2.1301.
  85. Viktor Karádi; Andrea Cau; Michele Mazza; Manuel Rigo (2020). "The last phase of conodont evolution during the Late Triassic: Integrating biostratigraphic and phylogenetic approaches". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109144. doi:10.1016/j.palaeo.2019.03.045.
  86. Shunxin Zhang (2020). "Upper Cambrian and Lower Ordovician conodont biostratigraphy and revised lithostratigraphy, Boothia Peninsula, Nunavut". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2020-0006.
  87. L. G. Bondarenko; A. M. Popov (2020). "A new conodont species Scythogondolella dolosa sp. nov. from the Anasibirites nevolini Zone (Lower Triassic) of southern Primorye". Paleontological Journal. 54 (3): 287–289. doi:10.1134/S0031030120030041.
  88. Louise Souquet; Carlo Corradini; Catherine Girard (2020). "Siphonodella leiosa (Conodonta), a new unornamented species from the Tournaisian (lower Carboniferous) of Puech de la Suque (Montagne Noire, France)". Geobios. in press. doi:10.1016/j.geobios.2020.06.004.
  89. Sofie A. Gouwy; Thomas T. Uyeno; Alexander D. McCracken (2020). "Tortodus dodoensis, a new conodont species, and a Givetian (Middle Devonian) conodont fauna from the northern Mackenzie Mountains, northwest Canada". PalZ. 94 (2): 327–342. doi:10.1007/s12542-019-00462-1.
  90. Aneta Hušková; Ladislav Slavík (2020). "In search of Silurian/Devonian boundary conodont markers in carbonate environments of the Prague Synform (Czech Republic)". Palaeogeography, Palaeoclimatology, Palaeoecology. 549: Article 109126. doi:10.1016/j.palaeo.2019.03.027.
  91. Mohammad Shohel; Neo E. B. McAdams; Bradley D. Cramer; Tori Z. Forbes (2020). "Ontogenetic variability in crystallography and mosaicity of conodont apatite: implications for microstructure, palaeothermometry and geochemistry". Royal Society Open Science. 7 (7): Article ID 200322. doi:10.1098/rsos.200322.
  92. Pavel P. Skutschas; Veniamin V. Kolchanov; Achim H. Schwermann (2020). "First salamander from the Lower Cretaceous of Germany". Cretaceous Research. in press: Article 104606. doi:10.1016/j.cretres.2020.104606.
  93. B. I. Morkovin (2020). "A new benthosuchid (Amphibia: Temnospondyli) from the Lower Triassic of the Moscow Syncline". Paleontological Journal. 54 (4): 401–409. doi:10.1134/S0031030120040176.
  94. Per E. Ahlberg; Jennifer A. Clack (2020). "The smallest known Devonian tetrapod shows unexpectedly derived features". Royal Society Open Science. 7 (4): Article ID 192117. doi:10.1098/rsos.192117. PMC 7211834. PMID 32431888.
  95. Paula Muzzopappa; Agustín G. Martinelli; Juan P. Garderes; Guillermo W. Rougier (2020). "Exceptional avian pellet from the Paleocene of Patagonia and description of its content: a new species of calyptocephalellid (Neobatrachia) anuran". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1333.
  96. Pavel Skutschas; Veniamin Kolchanov; Sergey Krasnolutskii; Alexander Averianov; Rico Schellhorn; Julia Schultz; Thomas Martin (2020). "A new small-sized stem salamander from the Middle Jurassic of Western Siberia, Russia". PLoS ONE. 15 (2): e0228610. doi:10.1371/journal.pone.0228610. PMC 7029856. PMID 32074114.
  97. Federico Agnolin; Ismar Souza Carvalho; Alexis M. Aranciaga Rolando; Fernando E. Novas; José Xavier-Neto; José Artur Ferreira Gomes Andrade; Francisco Idalécio Freitas (2020). "Early Cretaceous neobatrachian frog (Anura) from Brazil sheds light on the origin of modern anurans". Journal of South American Earth Sciences. 101: Article 102633. doi:10.1016/j.jsames.2020.102633.
  98. V. V. Bulanov (2020). "A new Leptoropha (Kotlassiidae, Seymouriamorpha) species from the Upper Urzhumian of European Russia". Paleontological Journal. 54 (3): 290–296. doi:10.1134/S0031030120030053.
  99. Davit Vasilyan; Vadym Yanenko (2020). "The last Palaeoproteus (Urodela: Batrachosauroididae) of Europe". Scientific Reports. 10 (1): Article number 2733. doi:10.1038/s41598-020-59255-1. PMC 7026125. PMID 32066790.
  100. Eliseu Vieira Dias; Sérgio Dias-da-Silva; Cesar Leandro Schultz (2020). "A new short-snouted rhinesuchid from the Permian of southern Brazil". Revista Brasileira de Paleontologia. 23 (2): 98–122. doi:10.4072/rbp.2020.2.03.
  101. Arjan Mann; Bryan M. Gee; Jason D. Pardo; David Marjanović; Gabrielle R. Adams; Ami S. Calthorpe; Hillary C. Maddin; Jason S. Anderson (2020). "Reassessment of historic 'microsaurs' from Joggins, Nova Scotia, reveals hidden diversity in the earliest amniote ecosystem". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1316.
  102. Bryan M. Gee (2020). "Size matters: the effects of ontogenetic disparity on the phylogeny of Trematopidae (Amphibia: Temnospondyli)". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zlz170.
  103. Bryan M. Gee; Robert R. Reisz (2020). "A re‐description of the late Carboniferous trematopid Actiobates peabodyi from Garnett, Kansas". The Anatomical Record. in press. doi:10.1002/ar.24381. PMID 32003550.
  104. Arjan Mann; Bryan M. Gee (2020). "Lissamphibian-like toepads in an exceptionally preserved amphibamiform from Mazon Creek". Journal of Vertebrate Paleontology. 39 (6): e1727490. doi:10.1080/02724634.2019.1727490.
  105. Jade B. Atkins; Peter Sourges; Nadia B. Fröbisch; Robert R. Reisz; Hillary C. Maddin (2020). "Late ontogeny in the small Early Permian amphibamiform dissorophoid Pasawioops mayi". Journal of Vertebrate Paleontology. in press: e1772800. doi:10.1080/02724634.2020.1772800.
  106. Bryan M. Gee; Yara Haridy; Robert R. Reisz (2020). "Histological skeletochronology indicates developmental plasticity in the early Permian stem lissamphibian Doleserpeton annectens". Ecology and Evolution. 10 (4): 2153–2169. doi:10.1002/ece3.6054. PMC 7042763. PMID 32128146.
  107. I. V. Novikov; P. A. Haiduk; A. V. Gribanov; А. N. Ivanov; А. V. Novikov; I. A. Starodubtseva (2020). "The earliest case of neoplastic bone lesion in tetrapods". Paleontological Journal. 54 (1): 68–72. doi:10.1134/S0031030120010074.
  108. Michael W. Maisch (2020). "Aphaneramma kokeni (von Huene, 1920), a lonchorhynchine trematosaurid (Amphibia: Temnospondyli) from the Lower Triassic of Pakistan". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (3): 211–241. doi:10.1127/njgpa/2020/0879.
  109. Dorota Konietzko‐Meier; Elżbieta M. Teschner; Adam Bodzioch; P. Martin Sander (2020). "Pentadactyl manus of the Metoposaurus krasiejowensis from the Late Triassic of Poland, the first record of pentadactyly among Temnospondyli". Journal of Anatomy. in press. doi:10.1111/joa.13276. PMID 32707603.
  110. Steven L. Wick (2020). "Albanerpetontids (Lissamphibia, Albanerpetontidae) from the Aguja Formation (lower Campanian) of West Texas, USA". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2020-0071.
  111. Rainer R. Schoch; Ralf Werneburg; Sebastian Voigt (2020). "A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders". Proceedings of the National Academy of Sciences of the United States of America. 117 (21): 11584–11588. doi:10.1073/pnas.2001424117. PMC 7261083. PMID 32393623.
  112. Peter Pogoda; Marcus Zuber; Tilo Baumbach; Rainer R. Schoch; Alexander Kupfer (2020). "Cranial shape evolution of extant and fossil crocodile newts and its relation to reproduction and ecology". Journal of Anatomy. 237 (2): 285–300. doi:10.1111/joa.13201. PMC 7369190. PMID 32297321.
  113. Thomas Mörs; Marcelo Reguero; Davit Vasilyan (2020). "First fossil frog from Antarctica: implications for Eocene high latitude climate conditions and Gondwanan cosmopolitanism of Australobatrachia". Scientific Reports. 10 (1): Article number 5051. doi:10.1038/s41598-020-61973-5. PMC 7181706. PMID 32327670.
  114. David C. Blackburn; Rachel M. Keeffe; María C. Vallejo-Pareja; Jorge Vélez-Juarbe (2020). "The earliest record of Caribbean frogs: a fossil coquí from Puerto Rico". Biology Letters. 16 (4): Article ID 20190947. doi:10.1098/rsbl.2019.0947. PMC 7211465. PMID 32264782.
  115. Marcello Ruta; Jennifer A. Clack; Timothy R. Smithson (2020). "A review of the stem amniote Eldeceeon rolfei from the Viséan of East Kirkton, Scotland". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. in press. doi:10.1017/S1755691020000079.
  116. Jordi Estefa; Jozef Klembara; Paul Tafforeau; Sophie Sanchez (2020). "Limb-bone development of seymouriamorphs: implications for the evolution of growth strategy in stem amniotes". Frontiers in Earth Science. 8: Article 97. doi:10.3389/feart.2020.00097.
  117. Kayla D. Bazzana; Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2020). "Neurocranial anatomy of Seymouria from Richards Spur, Oklahoma". Journal of Vertebrate Paleontology. 39 (5): e1694535. doi:10.1080/02724634.2019.1694535.
  118. Kayla D. Bazzana; Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2020). "Postcranial anatomy and histology of Seymouria, and the terrestriality of seymouriamorphs". PeerJ. 8: e8698. doi:10.7717/peerj.8698. PMC 7069408. PMID 32195050.
  119. Bryan M. Gee; Joseph J. Bevitt; Robert R. Reisz (2020). "Computed tomographic analysis of the cranium of the early Permian recumbirostran 'microsaur' Euryodus dalyae reveals new details of the braincase and mandible". Papers in Palaeontology. in press. doi:10.1002/spp2.1304.
  120. Jozef Klembara; Miroslav Hain; Andrej Čerňanský; David S. Berman; Amy C. Henrici (2020). "Anatomy of the neural endocranium and stapes of Diadectes absitus (Diadectomorpha) from the early Permian of Germany based on the high‐resolution X‐ray microcomputed tomography". The Anatomical Record. in press. doi:10.1002/ar.24376. PMID 31967384.
  121. Frederik Spindler; Sebastian Voigt; Jan Fischer (2020). "Edaphosauridae (Synapsida, Eupelycosauria) from Europe and their relationship to North American representatives". PalZ. 94 (1): 125–153. doi:10.1007/s12542-019-00453-2.
  122. Jun Liu; Fernando Abdala (2020). "The tetrapod fauna of the upper Permian Naobaogou Formation of China: 5. Caodeyao liuyufengi gen. et sp. nov., a new peculiar therocephalian". PeerJ. 8: e9160. doi:10.7717/peerj.9160. PMC 7261480. PMID 32523808.
  123. Helke B. Mocke; Leandro C. Gaetano; Fernando Abdala (2020). "A new species of the carnivorous cynodont Chiniquodon (Cynodontia, Chiniquodontidae) from the Namibian Triassic". Journal of Vertebrate Paleontology. 39 (6): e1754231. doi:10.1080/02724634.2019.1754231.
  124. Hillary C. Maddin; Arjan Mann; Brian Hebert (2020). "Varanopid from the Carboniferous of Nova Scotia reveals evidence of parental care in amniotes". Nature Ecology & Evolution. 4 (1): 50–56. doi:10.1038/s41559-019-1030-z. PMID 31900446.
  125. Frederik Spindler (2020). "Re-evaluation of an early sphenacodontian synapsid from the Lower Permian of England". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 111 (1): 27–37. doi:10.1017/S175569101900015X.
  126. Frederik Spindler (2020). "A faunivorous early sphenacodontian synapsid with a diastema". Palaeontologia Electronica. 23 (1): Article number 23(1):a01. doi:10.26879/1023.
  127. David S. Berman; Hillary C. Maddin; Amy C. Henrici; Stuart S. Sumida; Diane Scott; Robert R. Reisz (2020). "New primitive caseid (Synapsida, Caseasauria) from the Early Permian of Germany". Annals of Carnegie Museum. 86 (1): 43–75. doi:10.2992/007.086.0103.
  128. Tomasz Sulej; Grzegorz Niedźwiedzki; Mateusz Tałanda; Dawid Dróżdż; Ewa Hara (2020). "A new early Late Triassic non-mammaliaform eucynodont from Poland". Historical Biology: An International Journal of Paleobiology. 32 (1): 80–92. doi:10.1080/08912963.2018.1471477.
  129. Liu, Jun (2020). "Taoheodon baizhijuni, gen. et sp. nov. (Anomodontia, Dicynodontoidea), from the upper Permian Sunjiagou Formation of China and its implications". Journal of Vertebrate Paleontology. In press: e1762088. doi:10.1080/02724634.2020.1762088.
  130. Katrina E. Jones; Sarah Gonzalez; Kenneth D. Angielczyk; Stephanie E. Pierce (2020). "Regionalization of the axial skeleton predates functional adaptation in the forerunners of mammals". Nature Ecology & Evolution. 4 (3): 470–478. doi:10.1038/s41559-020-1094-9. PMID 32015524.
  131. Mathieu G. Faure-Brac; Jorge Cubo (2020). "Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190138. doi:10.1098/rstb.2019.0138. PMC 7017441. PMID 31928185.
  132. Philip Fahn-Lai; Andrew A. Biewener; Stephanie E. Pierce (2020). "Broad similarities in shoulder muscle architecture and organization across two amniotes: implications for reconstructing non-mammalian synapsids". PeerJ. 8: e8556. doi:10.7717/peerj.8556. PMC 7034385. PMID 32117627.
  133. Leonidas Brikiatis (2020). "An early Pangaean vicariance model for synapsid evolution". Scientific Reports. 10 (1): Article number 13091. doi:10.1038/s41598-020-70117-8. PMC 7403356. PMID 32753752.
  134. Adam K. Huttenlocker; Christen D. Shelton (2020). "Bone histology of varanopids (Synapsida) from Richards Spur, Oklahoma, sheds light on growth patterns and lifestyle in early terrestrial colonizers". Philosophical Transactions of the Royal Society B: Biological Sciences. 375 (1793): Article ID 20190142. doi:10.1098/rstb.2019.0142. PMC 7017428. PMID 31928198.
  135. Arjan Mann; Robert R. Reisz (2020). "Antiquity of "sail-backed" neural spine hyper-elongation in mammal forerunners". Frontiers in Earth Science. 8: Article 83. doi:10.3389/feart.2020.00083.
  136. Amin Agliano; P. Martin Sander; Tanja Wintrich (2020). "Bone histology and microanatomy of Edaphosaurus and Dimetrodon (Amniota, Synapsida) vertebrae from the Lower Permian of Texas". The Anatomical Record. in press. doi:10.1002/ar.24468. PMID 32484294.
  137. Frederik Spindler (2020). "The skull of Tetraceratops insignis (Synapsida, Sphenacodontia)". Palæovertebrata. 43 (1): e1. doi:10.18563/pv.43.1.e1.
  138. Kévin Rey; Michael O. Day; Romain Amiot; François Fourel; Julie Luyt; Christophe Lécuyer; Bruce S. Rubidge (2020). "Stable isotopes (δ18O and δ13C) give new perspective on the ecology and diet of Endothiodon bathystoma (Therapsida, Dicynodontia) from the late Permian of the South African Karoo Basin". Palaeogeography, Palaeoclimatology, Palaeoecology. 556: Article 109882. doi:10.1016/j.palaeo.2020.109882.
  139. Luisa C. Pusch; Jasper Ponstein; Christian F. Kammerer; Jörg Fröbisch (2020). "Novel endocranial data on the early therocephalian Lycosuchus vanderrieti underpin high character variability in early theriodont evolution". Frontiers in Ecology and Evolution. 7: Article 464. doi:10.3389/fevo.2019.00464.
  140. Gerd Geyer; John M. Malinky (2020). "Helcionelloid molluscs and hyoliths from the Miaolingian (middle Cambrian) of the subsurface of the Delitzsch–Torgau–Doberlug Syncline, northern Saxony, Germany". PalZ. 94 (2): 271–293. doi:10.1007/s12542-019-00472-z.
  141. Julien Kimmig; Paul A. Selden (2020). "A new shell-bearing organism from the Cambrian Spence Shale of Utah". Palaeoworld. in press. doi:10.1016/j.palwor.2020.05.003.
  142. Lucy A. Muir; Yuandong Zhang; Joseph P. Botting; Xuan Ma (2020). "Avitograptus species (Graptolithina) from the Hirnantian (uppermost Ordovician) Anji Biota of South China and the evolution of Akidograptus and Parakidograptus". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.12.
  143. Christian B. Skovsted; Uwe Balthasar; Jakob Vinther; Erik A. Sperling (2020). "Small shelly fossils and carbon isotopes from the early Cambrian (Stages 3–4) Mural Formation of western Laurentia". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1313.
  144. Jean‐Bernard Caron; Cédric Aria (2020). "The Collins' monster, a spinous suspension‐feeding lobopodian from the Cambrian Burgess Shale of British Columbia". Palaeontology. Online edition. doi:10.1111/pala.12499.
  145. Zhixin Sun; Han Zeng; Fangchen Zhao (2020). "A new middle Cambrian radiodont from North China: Implications for morphological disparity and spatial distribution of hurdiids". Palaeogeography, Palaeoclimatology, Palaeoecology. 558: Article 109947. doi:10.1016/j.palaeo.2020.109947.
  146. T.Q. Shao; J.C. Qin; Y. Shao; Y.H. Liu; D. Waloszek; A. Maas; B.C. Duan; Q.Wang; Y. Xu; H.Q. Zhang (2020). "New macrobenthic cycloneuralians from the Fortunian (lowermost Cambrian) of South China". Precambrian Research. in press: 105413. doi:10.1016/j.precamres.2019.105413.
  147. Simon Conway Morris; Ru D.A. Smith; Jennifer F. Hoyal Cuthill; Enrico Bonino; Rudy Lerosey-Aubril (2020). "A possible Cambrian stem-group gnathiferan-chaetognath from the Weeks Formation (Miaolingian) of Utah". Journal of Paleontology. 94 (4): 624–636. doi:10.1017/jpa.2020.4.
  148. Hong Chen; Luke A. Parry; Jakob Vinther; Dayou Zhai; Xianguang Hou; Xiaoya Ma (2020). "A Cambrian crown annelid reconciles phylogenomics and the fossil record". Nature. 583 (7815): 249–252. doi:10.1038/s41586-020-2384-8. PMID 32528177.
  149. Juan Carlos Gutiérrez-Marco; Lucy A. Muir; Charles E. Mitchell (2020). "Upper Ordovician planktic and benthic graptolites and a possible hydroid from the Tafilalt Biota, southeastern Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. doi:10.1144/SP485-2019-23.
  150. Scott D. Evans; Ian V. Hughes; James G. Gehling; Mary L. Droser (2020). "Discovery of the oldest bilaterian from the Ediacaran of South Australia". Proceedings of the National Academy of Sciences of the United States of America. 117 (14): 7845–7850. doi:10.1073/pnas.2001045117. PMC 7149385. PMID 32205432.
  151. Xu Chen; Qing Chen; Kyi Pyar Aung; Lucy A. Muir (2020). "Latest Ordovician graptolites from the Mandalay Region, Myanmar". Palaeoworld. 29 (1): 47–65. doi:10.1016/j.palwor.2019.09.003.
  152. David K. Loydell (2020). "Lenzograptus, a new name for the graptolite Lenzia Rickards and Wright, 1999". Journal of Paleontology. in press. doi:10.1017/jpa.2020.59.
  153. Michał Zatoń; David J.C. Mundy (2020). "Microconchus cravenensis n. sp.: a giant among microconchid tubeworms". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.45.
  154. Daniela P. Heredia-Jiménez; Olev Vinn; Blanca E. Buitrón-Sánchez; Miguel A. Torres-Martínez (2020). "A new middle Permian microconchid from Chiapas, Mexico, and its palaeoecological implications". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-020-00418-3.
  155. Muhammad Aqqid Saparin; Mark Williams; Jan Zalasiewicz; Toshifumi Komatsu; Adrian Rushton; Hung Dinh Doan; Ha Thai Trinh; Hung Ba Nguyen; Minh Trung Nguyen; Thijs R. A. Vandenbroucke (2020). "Graptolites from Silurian (Llandovery series) sedimentary deposits attributed to a forearc setting, Co To Formation, Co To Archipelago, northeast Vietnam". Paleontological Research. 24 (1): 26–40. doi:10.2517/2019PR003.
  156. Lucy A. Muir; Joseph P. Botting; Steven N. A. Walker; James D. Schiffbauer; Breandán Anraoi MacGabhann (2020). "Onuphionella corusca sp. nov.: an early Cambrian-type agglutinated tube from Upper Ordovician strata of Morocco". In A. W. Hunter; J. J. Álvaro; B. Lefebvre; P. van Roy; S. Zamora (eds.). The Great Ordovician Biodiversification Event: Insights from the Tafilalt Biota, Morocco. Geological Society, London, Special Publications. The Geological Society of London. pp. SP485.7. doi:10.1144/SP485.7.
  157. David K. Loydell; Natalia Walasek (2020). "Two new species of graptolite from the Telychian (upper Llandovery, Silurian) of Kallholn, Dalarna, Sweden". GFF. in press: 1–4. doi:10.1080/11035897.2019.1686419.
  158. David K. Loydell (2020). "Middle Telychian (Llandovery, Silurian) graptolites and biostratigraphy of the Howgill Fells, England, based upon the collections of D.W.R. Wilson housed in the Lapworth Museum of Geology, University of Birmingham". Proceedings of the Yorkshire Geological Society. 63 (1): 33–42. doi:10.1144/pygs2019-014.
  159. Jobst Wendt (2020). "A rare case of an evolutionary late and ephemeral biomineralization: tunicates with composite calcareous skeletons". Journal of Paleontology. 94 (4): 748–757. doi:10.1017/jpa.2019.109.
  160. Anna F. Whitaker; Paul G. Jamison; James D. Schiffbauer; Julien Kimmig (2020). "Re-description of the Spence Shale palaeoscolecids in light of new morphological features with comments on palaeoscolecid taxonomy and taphonomy". PalZ. in press. doi:10.1007/s12542-020-00516-9.
  161. T.Q. Shao; Q. Wang; Y.H. Liu; J.C. Qin; Y.N. Zhang; M.J. Liu; Y. Shao; J.Y. Zhao; H.Q. Zhang (2020). "A new scalidophoran animal from the Cambrian Fortunian Stage of South China and its implications for the origin and early evolution of Kinorhyncha". Precambrian Research. in press: Article 105616. doi:10.1016/j.precamres.2020.105616.
  162. Ben Yang; Michael Steiner; James D. Schiffbauer; Tara Selly; Xuwen Wu; Cong Zhang; Pengju Liu (2020). "Ultrastructure of Ediacaran cloudinids suggests diverse taphonomic histories and affinities with non-biomineralized annelids". Scientific Reports. 10 (1): Article number 535. doi:10.1038/s41598-019-56317-x. PMC 6968996. PMID 31953458.
  163. Nicholas J. Butterfield (2020). "Constructional and functional anatomy of Ediacaran rangeomorphs". Geological Magazine. in press. doi:10.1017/S0016756820000734.
  164. James D. Schiffbauer; Tara Selly; Sarah M. Jacquet; Rachel A. Merz; Lyle L. Nelson; Michael A. Strange; Yaoping Cai; Emily F. Smith (2020). "Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period". Nature Communications. 11 (1): Article number 205. doi:10.1038/s41467-019-13882-z. PMC 6954273. PMID 31924764.
  165. Jie Yang; Martin R. Smith; Xi-guang Zhang; Xiao-yu Yang (2020). "Introvert and pharynx of Mafangscolex, a Cambrian palaeoscolecid". Geological Magazine. in press. doi:10.1017/S0016756820000308.
  166. Lucy A. Muir; Joseph P. Botting (2020). "The putative Ordovician annelid worm Haileyia adhaerens Ruedemann, 1934 is not a recognizable fossil". Journal of Paleontology. 94 (3): 589–591. doi:10.1017/jpa.2019.76.
  167. Deng Wang; Jean Vannier; Xiao-guang Yang; Jie Sun; Yi-fei Sun; Wen-jing Hao; Qing-qin Tang; Ping Liu; Jian Han (2020). "Cuticular reticulation replicates the pattern of epidermal cells in lowermost Cambrian scalidophoran worms". Proceedings of the Royal Society B: Biological Sciences. 287 (1926): Article ID 20200470. doi:10.1098/rspb.2020.0470. PMC 7282905. PMID 32370674.
  168. Richard J. Howard; Xianguang Hou; Gregory D. Edgecombe; Tobias Salge; Xiaomei Shi; Xiaoya Ma (2020). "A tube-dwelling Early Cambrian lobopodian". Current Biology. 30 (8): 1529–1536.e2. doi:10.1016/j.cub.2020.01.075. PMID 32109391.
  169. Stephen Pates; Joseph P. Botting; Lucy M. E. McCobb; Lucy A. Muir (2020). "A miniature Ordovician hurdiid from Wales demonstrates the adaptability of Radiodonta". Royal Society Open Science. 7 (6): Article ID: 200459. doi:10.1098/rsos.200459. PMC 7353989. PMID 32742697.
  170. Guangjin Li; Lei Chen; Ke Pang; Guangzhao Zhou; Chunmei Han; Le Yang; Weiguo Lv; Chengxi Wu; Wei Wang; Fengjie Yang (2020). "An assemblage of macroscopic and diversified carbonaceous compression fossils from the Tonian Shiwangzhuang Formation in western Shandong, North China". Precambrian Research. 346: Article 105801. doi:10.1016/j.precamres.2020.105801.
  171. David C. Kopaska-Merkel; Douglas W. Haywick; Richard G. Keyes (2020). "A new mound-building biota from the lower Carboniferous of Alabama". Journal of Paleontology. 94 (3): 436–456. doi:10.1017/jpa.2019.103.
  172. Xiaopeng Wang; Ke Pang; Zhe Chen; Bin Wan; Shuhai Xiao; Chuanming Zhou; Xunlai Yuan (2020). "The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China". Journal of Paleontology. Online edition. doi:10.1017/jpa.2020.43.
  173. Carla J. Harper; Christopher Walker; Andrew Schwendemann; Hans Kerp; Michael Krings (2020). "Archaeosporites rhyniensis gen. et sp. nov. (Glomeromycota, Archaeosporaceae), from the Lower Devonian Rhynie chert – a fungal lineage morphologically unchanged for more than 400 million years". Annals of Botany. in press. doi:10.1093/aob/mcaa113. PMID 32577725.
  174. M. L. Droser; S. D. Evans; P. W. Dzaugis; E. B. Hughes; J. G. Gehling (2020). "Attenborites janeae: a new enigmatic organism from the Ediacara Member (Rawnsley Quartzite), South Australia". Australian Journal of Earth Sciences. in press: 1–7. doi:10.1080/08120099.2018.1495668.
  175. Michael Krings; Carla J. Harper (2020). "Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: Brijax amictus gen. et sp. nov. (Chytridiomycota) colonizing the walls of glomeromycotan acaulospores". Review of Palaeobotany and Palynology. 281: Article 104287. doi:10.1016/j.revpalbo.2020.104287.
  176. Cléber Pereira Calça; Thomas Rich Fairchild (2020). "A widespread, nearly monospecific silicified coccoidal microbiota from the Permian of Brazil (Assistência Formation, Irati Subgroup, Paraná Basin)". Ameghiniana. in press: in press. doi:10.5710/AMGH.21.04.2020.3331.
  177. Serge V. Naugolnykh (2020). "Main biotic and climatic events in Early Permian of the Western Urals, Russia, as exemplified by the shallow-water biota of the early Kungurian lagoons". Palaeoworld. in press. doi:10.1016/j.palwor.2018.10.002.
  178. Leiming Yin; Fanwei Meng; Fanfan Kong; Changtai Niu (2020). "Microfossils from the Paleoproterozoic Hutuo Group, Shanxi, North China: Early evidence for eukaryotic metabolism". Precambrian Research. 342: Article 105650. doi:10.1016/j.precamres.2020.105650.
  179. Bin Wan; Zhe Chen; Xunlai Yuan; Ke Pang; Qing Tang; Chengguo Guan; Xiaopeng Wang; S.K. Pandey; Mary L. Droser; Shuhai Xiao (2020). "A tale of three taphonomic modes: The Ediacaran fossil Flabellophyton preserved in limestone, black shale, and sandstone". Gondwana Research. 84: 296–314. doi:10.1016/j.gr.2020.04.003.
  180. Gregory J. Retallack; Adrian P. Broz (2020). "Arumberia and other Ediacaran–Cambrian fossils of central Australia". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1755281.
  181. P. W. Dzaugis; S. D. Evans; M. L. Droser; J. G. Gehling; I. V. Hughes (2020). "Stuck in the mat: Obamus coronatus, a new benthic organism from the Ediacara Member, Rawnsley Quartzite, South Australia". Australian Journal of Earth Sciences. in press: 1–7. doi:10.1080/08120099.2018.1479306.
  182. George Poinar; Fernando E. Vega (2020). "Entomopathogenic fungi (Hypocreales: Ophiocordycipitaceae) infecting bark lice (Psocoptera) in Dominican and Baltic amber". Mycology. 11 (1): 71–77. doi:10.1080/21501203.2019.1706657. PMC 7033690. PMID 32128283.
  183. George Poinar (2020). "A mid-Cretaceous pycnidia, Palaeomycus epallelus gen. et sp. nov., in Myanmar amber". Historical Biology: An International Journal of Paleobiology. 32 (2): 234–237. doi:10.1080/08912963.2018.1481836.
  184. George Poinar; Fernando E. Vega (2020). "Mid-Cretaceous cellular slime mold (Eukarya: Dictyostelia?) in Burmese amber". Historical Biology: An International Journal of Paleobiology. in press: 1–4. doi:10.1080/08912963.2019.1658095.
  185. Ludovic Le Renard; Ruth A. Stockey; Garland Upchurch; Mary L. Berbee (2020). "A new epiphyllous fly-speck fungus from the Early Cretaceous Potomac Group of Virginia (125–112 Ma): Protographum luttrellii, gen. et sp. nov". Mycologia. 112 (3): 504–518. doi:10.1080/00275514.2020.1718441. PMID 32167869.
  186. Natalia P. Maslova; Aleksandra B. Sokolova; Тatiana M. Kodrul; Anna V. Tobias; Natalia V. Bazhenova; Xin‐Kai Wu; Jian‐Hua Jin (2020). "Diverse epiphyllous fungi on Cunninghamia leaves from the Oligocene of South China and their paleoecological and paleoclimatic implications". Journal of Systematics and Evolution. in press. doi:10.1111/jse.12652.
  187. Michael Krings; Carla J. Harper (2020). "Morphological diversity of fungal reproductive units in the Lower Devonian Rhynie and Windyfield cherts, Scotland: a new species of the genus Windipila". PalZ. in press. doi:10.1007/s12542-019-00507-5.
  188. Phoebe A. Cohen; Maoli Vizcaíno; Ross P. Anderson (2020). "Oldest fossil ciliates from the Cryogenian glacial interlude reinterpreted as possible red algal spores". Palaeontology. in press. doi:10.1111/pala.12497.
  189. S. Bonneville; F. Delpomdor; A. Préat; C. Chevalier; T. Araki; M. Kazemian; A. Steele; A. Schreiber; R. Wirth; L. G. Benning (2020). "Molecular identification of fungi microfossils in a Neoproterozoic shale rock". Science Advances. 6 (4): eaax7599. doi:10.1126/sciadv.aax7599. PMC 6976295. PMID 32010783.
  190. Zongjun Yin; Weichen Sun; Pengju Liu; Maoyan Zhu; Philip C. J. Donoghue (2020). "Developmental biology of Helicoforamina reveals holozoan affinity, cryptic diversity, and adaptation to heterogeneous environments in the early Ediacaran Weng'an biota (Doushantuo Formation, South China)". Science Advances. 6 (24): eabb0083. doi:10.1126/sciadv.abb0083. PMC 7292632. PMID 32582859.
  191. Akshay Mehra; Wesley A. Watters; John P. Grotzinger; Adam C. Maloof (2020). "Three-dimensional reconstructions of the putative metazoan Namapoikia show that it was a microbial construction". Proceedings of the National Academy of Sciences of the United States of America. 117 (33): 19760–19766. doi:10.1073/pnas.2009129117. PMID 32747528.
  192. Alison T. Cribb; David J. Bottjer (2020). "Complex marine bioturbation ecosystem engineering behaviors persisted in the wake of the end-Permian mass extinction". Scientific Reports. 10 (1): Article number 203. doi:10.1038/s41598-019-56740-0. PMC 6959249. PMID 31937801.
  193. Bernardo de C.P. e M. Peixoto; M. Gabriela Mángano; Nicholas J. Minter; Luciana Bueno dos Reis Fernandes; Marcelo Adorna Fernandes (2020). "A new insect trackway from the Upper Jurassic—Lower Cretaceous eolian sandstones of São Paulo State, Brazil: implications for reconstructing desert paleoecology". PeerJ. 8: e8880. doi:10.7717/peerj.8880. PMC 7252435. PMID 32509444.
  194. Juan Carlos Cisneros; Michael O. Day; Jaco Groenewald; Bruce S. Rubidge (2020). "Small footprints expand Middle Permian amphibian diversity in the South African Karoo". PALAIOS. 35 (1): 1–11. Bibcode:2020Palai..35....1C. doi:10.2110/palo.2018.098.
  195. Eudald Mujal; Rainer R. Schoch (2020). "Middle Triassic (Ladinian) amphibian tracks from the Lower Keuper succession of southern Germany: Implications for temnospondyl locomotion and track preservation". Palaeogeography, Palaeoclimatology, Palaeoecology. 543: Article 109625. Bibcode:2020PPP...543j9625M. doi:10.1016/j.palaeo.2020.109625.
  196. Kyung Soo Kim; Martin G. Lockley; Jong Deock Lim; Seul Mi Bae; Anthony Romilio (2020). "Trackway evidence for large bipedal crocodylomorphs from the Cretaceous of Korea". Scientific Reports. 10 (1): Article number 8680. doi:10.1038/s41598-020-66008-7. PMC 7289791. PMID 32528068.
  197. Jean-David Moreau; Vincent Trincal; Emmanuel Fara; Louis Baret; Alain Jacquet; Claude Barbini; Remi Flament; Michel Wienin; Benjamin Bourel; Amandine Jean (2020). "Middle Jurassic tracks of sauropod dinosaurs in a deep karst cave in France". Journal of Vertebrate Paleontology. 39 (6): e1728286. doi:10.1080/02724634.2019.1728286.
  198. Paige E. dePolo; Stephen L. Brusatte; Thomas J. Challands; Davide Foffa; Mark Wilkinson; Neil D. L. Clark; Jon Hoad; Paulo Victor Luiz Gomes da Costa Pereira; Dugald A. Ross; Thomas J. Wade (2020). "Novel track morphotypes from new tracksites indicate increased Middle Jurassic dinosaur diversity on the Isle of Skye, Scotland". PLoS ONE. 15 (3): e0229640. doi:10.1371/journal.pone.0229640. PMC 7065758. PMID 32160212.
  199. Martin Ezequiel Farina; Verónica Krapovickas; Lucas Fernández Piana; Rocío Belen Vera; María De Los Ángeles Ordoñez (2020). "Flamingo-like footprints and the problem of addressing biological diversity in the past". Historical Biology: An International Journal of Paleobiology. in press: 1–15. doi:10.1080/08912963.2019.1669024.
  200. Jean-Michel Mazin; Joane Pouech (2020). "The first non-pterodactyloid pterosaurian trackways and the terrestrial ability of non-pterodactyloid pterosaurs". Geobios. 58: 39–53. doi:10.1016/j.geobios.2019.12.002.
  201. Emese M. Bordy; Akhil Rampersadh; Miengah Abrahams; Martin G. Lockley; Howard V. Head (2020). "Tracking the Pliensbachian–Toarcian Karoo firewalkers: Trackways of quadruped and biped dinosaurs and mammaliaforms". PLoS ONE. 15 (1): e0226847. doi:10.1371/journal.pone.0226847. PMC 6988920. PMID 31995575.
  202. Rosalía Guerrero-Arenas; Eduardo Jiménez-Hidalgo; Jorge Fernando Genise (2020). "Burrow systems evince non-solitary geomyid rodents from the Paleogene of southern Mexico". PLoS ONE. 15 (3): e0230040. doi:10.1371/journal.pone.0230040. PMC 7067467. PMID 32163482.
  203. Alexander G. Liu; Frances S. Dunn (2020). "Filamentous connections between Ediacaran fronds". Current Biology. 30 (7): 1322–1328.e3. doi:10.1016/j.cub.2020.01.052. PMID 32142705.
  204. Jack J. Matthews; Alexander G. Liu; Chuan Yang; Duncan McIlroy; Bruce Levell; Daniel J. Condon (2020). "A chronostratigraphic framework for the rise of the Ediacaran macrobiota: new constraints from Mistaken Point Ecological Reserve, Newfoundland". GSA Bulletin. in press. doi:10.1130/B35646.1.
  205. Bruno Becker-Kerber; Paulo Sergio Gomes Paim; Farid Chemale Junior; Tiago Jonatan Girelli; Ana Lucia Zucatti da Rosa; Abderrazzak El Albani; Gabriel L. Osés; Gustavo M.E.M. Prado; Milene Figueiredo; Luiz Sérgio Amarante Simões; Mírian Liza Alves Forancelli Pacheco (2020). "The oldest record of Ediacaran macrofossils in Gondwana (~563 Ma, Itajaí Basin, Brazil)". Gondwana Research. 84: 211–228. doi:10.1016/j.gr.2020.03.007.
  206. Ilya Bobrovskiy; Janet M. Hope; Elena Golubkova; Jochen J. Brocks (2020). "Food sources for the Ediacara biota communities". Nature Communications. 11 (1): Article number 1261. doi:10.1038/s41467-020-15063-9. PMC 7062841. PMID 32152319.
  207. R. A. Close; R. B. J. Benson; E. E. Saupe; M. E. Clapham; R. J. Butler (2020). "The spatial structure of Phanerozoic marine animal diversity". Science. 368 (6489): 420–424. doi:10.1126/science.aay8309. PMID 32327597.
  208. Jun-xuan Fan; Shu-zhong Shen; Douglas H. Erwin; Peter M. Sadler; Norman MacLeod; Qiu-ming Cheng; Xu-dong Hou; Jiao Yang; Xiang-dong Wang; Yue Wang; Hua Zhang; Xu Chen; Guo-xiang Li; Yi-chun Zhang; Yu-kun Shi; Dong-xun Yuan; Qing Chen; Lin-na Zhang; Chao Li; Ying-ying Zhao (2020). "A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity". Science. 367 (6475): 272–277. doi:10.1126/science.aax4953. PMID 31949075.
  209. Shan-Chi Peng; Xian-Feng Yang; Yu Liu; Xue-Jian Zhu; Hai-Jing Sun; Samuel Zamora; Ying-Yan Mao; Yu-Chen Zhang (2020). "Fulu biota, a new exceptionally-preserved Cambrian fossil assemblage from the Longha Formation in southeastern Yunnan". Palaeoworld. in press. doi:10.1016/j.palwor.2020.02.001.
  210. Andrey Yu. Zhuravlev; Rachel Wood (2020). "Dynamic and synchronous changes in metazoan body size during the Cambrian Explosion". Scientific Reports. 10 (1): Article number 6784. doi:10.1038/s41598-020-63774-2. PMC 7176670. PMID 32321968.
  211. Jonathan L. Payne; Noel A. Heim (2020). "Body size, sampling completeness, and extinction risk in the marine fossil record". Paleobiology. 46 (1): 23–40. doi:10.1017/pab.2019.43.
  212. Franziska Franeck; Lee Hsiang Liow (2020). "Did hard substrate taxa diversify prior to the Great Ordovician Biodiversification Event?". Palaeontology. 63 (4): 675–687. doi:10.1111/pala.12489.
  213. Andrew J. Wendruff; Loren E. Babcock; Joanne Kluessendorf; Donald G. Mikulic (2020). "Paleobiology and taphonomy of exceptionally preserved organisms from the Waukesha Biota (Silurian), Wisconsin, USA". Palaeogeography, Palaeoclimatology, Palaeoecology. 546: Article 109631. doi:10.1016/j.palaeo.2020.109631.
  214. Barbara Seuss; Vanessa Julie Roden; Ádám T. Kocsis (2020). "Biodiversity patterns across the Late Paleozoic Ice Age". Palaeontologia Electronica. 23 (2): Article number 23(2):a35. doi:10.26879/1047.
  215. Victoria E. McCoy; Jasmina Wiemann; James C. Lamsdell; Christopher D. Whalen; Scott Lidgard; Paul Mayer; Holger Petermann; Derek E. G. Briggs (2020). "Chemical signatures of soft tissues distinguish between vertebrates and invertebrates from the Carboniferous Mazon Creek Lagerstätte of Illinois". Geobiology. in press. doi:10.1111/gbi.12397. PMID 32347003.
  216. Neil Brocklehurst (2020). "Olson's Gap or Olson's Extinction? A Bayesian tip-dating approach to resolving stratigraphic uncertainty". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): Article ID 20200154. doi:10.1098/rspb.2020.0154. PMC 7341920. PMID 32517621.
  217. Mao Luo; Luis A. Buatois; G.R. Shi; Zhong-Qiang Chen (2020). "Infaunal response during the end-Permian mass extinction". GSA Bulletin. in press. doi:10.1130/B35524.1.
  218. Haijun Song; Shan Huang; Enhao Jia; Xu Dai; Paul B. Wignall; Alexander M. Dunhill (2020). "Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 117 (30): 17578–17583. doi:10.1073/pnas.1918953117. PMC 7395496. PMID 32631978.
  219. Julia B. Desojo; Lucas E. Fiorelli; Martín D. Ezcurra; Agustín G. Martinelli; Jahandar Ramezani; Átila. A. S. Da Rosa; M. Belén von Baczko; M. Jimena Trotteyn; Felipe C. Montefeltro; Miguel Ezpeleta; Max C. Langer (2020). "The Late Triassic Ischigualasto Formation at Cerro Las Lajas (La Rioja, Argentina): fossil tetrapods, high-resolution chronostratigraphy, and faunal correlations". Scientific Reports. 10 (1): Article number 12782. doi:10.1038/s41598-020-67854-1. PMC 7391656. PMID 32728077.
  220. Reilly F. Hayes; Gavino Puggioni; William G. Parker; Catherine S. Tiley; Amanda L. Bednarick; David E. Fastovsky (2020). "Modeling the dynamics of a Late Triassic vertebrate extinction: The Adamanian/Revueltian faunal turnover, Petrified Forest National Park, Arizona, USA". Geology. 48 (4): 318–322. doi:10.1130/G47037.1.
  221. Paul B. Wignall; Jed W. Atkinson (2020). "A two-phase end-Triassic mass extinction". Earth-Science Reviews. 208: Article 103282. doi:10.1016/j.earscirev.2020.103282.
  222. Veronica Piazza; Clemens V. Ullmann; Martin Aberhan (2020). "Temperature-related body size change of marine benthic macroinvertebrates across the Early Toarcian Anoxic Event". Scientific Reports. 10 (1): Article number 4675. doi:10.1038/s41598-020-61393-5. PMC 7069967. PMID 32170120.
  223. John R. Foster; Darrin C. Pagnac; ReBecca K. Hunt-Foster (2020). "An unusually diverse northern biota from the Morrison Formation (Upper Jurassic), Black Hills, Wyoming". Geology of the Intermountain West. 7: 29–67. doi:10.31711/giw.v7.pp29-67.
  224. Saihong Yang; Huaiyu He; Fan Jin; Fucheng Zhang; Yuanbao Wu; Zhiqiang Yu; Qiuli Li; Min Wang; Jingmai K. O'Connor; Chenglong Deng; Rixiang Zhu; Zhonghe Zhou (2020). "The appearance and duration of the Jehol Biota: Constraint from SIMS U-Pb zircon dating for the Huajiying Formation in northern China". Proceedings of the National Academy of Sciences of the United States of America. 117 (25): 14299–14305. doi:10.1073/pnas.1918272117. PMC 7322064. PMID 32513701.
  225. Lida Xing; Liang Qiu (2020). "Zircon UPb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar". Palaeogeography, Palaeoclimatology, Palaeoecology. in press: Article 109960. doi:10.1016/j.palaeo.2020.109960.
  226. Takehito Ikejiri; YueHan Lu; Bo Zhang (2020). "Two-step extinction of Late Cretaceous marine vertebrates in northern Gulf of Mexico prolonged biodiversity loss prior to the Chicxulub impact". Scientific Reports. 10 (1): Article number 4169. doi:10.1038/s41598-020-61089-w. PMC 7060338. PMID 32144332.
  227. Francisco J. Rodríguez-Tovar; Christopher M. Lowery; Timothy J. Bralower; Sean P.S. Gulick; Heather L. Jones (2020). "Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event". Geology. in press. doi:10.1130/G47589.1.
  228. William J. Foster; Christopher L. Garvie; Anna M. Weiss; A. D. Muscente; Martin Aberhan; John W. Counts; Rowan C. Martindale (2020). "Resilience of marine invertebrate communities during the early Cenozoic hyperthermals". Scientific Reports. 10 (1): Article number 2176. doi:10.1038/s41598-020-58986-5. PMC 7005832. PMID 32034228.
  229. Zeresenay Alemseged; Jonathan G. Wynn; Denis Geraads; Denne Reed; W. Andrew Barr; René Bobe; Shannon P. McPherron; Alan Deino; Mulugeta Alene; Mark J. Sier; Diana Roman; Joseph Mohan (2020). "Fossils from Mille-Logya, Afar, Ethiopia, elucidate the link between Pliocene environmental changes and Homo origins". Nature Communications. 11 (1): Article number 2480. doi:10.1038/s41467-020-16060-8. PMC 7237685. PMID 32427848.
  230. Scott A. Hocknull; Richard Lewis; Lee J. Arnold; Tim Pietsch; Renaud Joannes-Boyau; Gilbert J. Price; Patrick Moss; Rachel Wood; Anthony Dosseto; Julien Louys; Jon Olley; Rochelle A. Lawrence (2020). "Extinction of eastern Sahul megafauna coincides with sustained environmental deterioration". Nature Communications. 11 (1): Article number 2250. doi:10.1038/s41467-020-15785-w. PMC 7231803. PMID 32418985.
  231. Frederik V. Seersholm; Daniel J. Werndly; Alicia Grealy; Taryn Johnson; Erin M. Keenan Early; Ernest L. Lundelius Jr.; Barbara Winsborough; Grayal Earle Farr; Rickard Toomey; Anders J. Hansen; Beth Shapiro; Michael R. Waters; Gregory McDonald; Anna Linderholm; Thomas W. Stafford Jr.; Michael Bunce (2020). "Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change". Nature Communications. 11 (1): Article number 2770. doi:10.1038/s41467-020-16502-3. PMC 7265304. PMID 32488006.
  232. David P. Ford; Roger B. J. Benson (2020). "The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae". Nature Ecology & Evolution. 4 (1): 57–65. doi:10.1038/s41559-019-1047-3. PMID 31900445.
  233. Roger A. Close; Roger B. J. Benson; John Alroy; Matthew T. Carrano; Terri J. Cleary; Emma M. Dunne; Philip D. Mannion; Mark D. Uhen; Richard J. Butler (2020). "The apparent exponential radiation of Phanerozoic land vertebrates is an artefact of spatial sampling biases". Proceedings of the Royal Society B: Biological Sciences. 287 (1924): Article ID 20200372. doi:10.1098/rspb.2020.0372. PMC 7209054. PMID 32259471.
  234. Neil Brocklehurst; Christian F. Kammerer; Roger J. Benson (2020). "The origin of tetrapod herbivory: effects on local plant diversity". Proceedings of the Royal Society B: Biological Sciences. 287 (1928): Article ID 20200124. doi:10.1098/rspb.2020.0124. PMC 7341937. PMID 32517628.
  235. Bethany J. Allen; Paul B. Wignall; Daniel J. Hill; Erin E. Saupe; Alexander M. Dunhill (2020). "The latitudinal diversity gradient of tetrapods across the Permo-Triassic mass extinction and recovery interval". Proceedings of the Royal Society B: Biological Sciences. 287 (1929): Article ID 20201125. doi:10.1098/rspb.2020.1125. PMC 7329043. PMID 32546099.
  236. "Asteroid impact, not volcanoes, made the Earth uninhabitable for dinosaurs". phys.org. Retrieved 6 July 2020.
  237. Chiarenza, Alfio Alessandro; Farnsworth, Alexander; Mannion, Philip D.; Lunt, Daniel J.; Valdes, Paul J.; Morgan, Joanna V.; Allison, Peter A. (24 June 2020). "Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction". Proceedings of the National Academy of Sciences. doi:10.1073/pnas.2006087117. ISSN 0027-8424. Retrieved 6 July 2020.
  238. Matthew R. Warke; Tommaso Di Rocco; Aubrey L. Zerkle; Aivo Lepland; Anthony R. Prave; Adam P. Martin; Yuichiro Ueno; Daniel J. Condon; Mark W. Claire (2020). "The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth"". Proceedings of the National Academy of Sciences of the United States of America. 117 (24): 13314–13320. doi:10.1073/pnas.2003090117. PMC 7306805. PMID 32482849.
  239. Alan D. Rooney; Marjorie D. Cantine; Kristin D. Bergmann; Irene Gómez-Pérez; Badar Al Baloushi; Thomas H. Boag; James F. Busch; Erik A. Sperling; Justin V. Strauss (2020). "Calibrating the coevolution of Ediacaran life and environment". Proceedings of the National Academy of Sciences of the United States of America. 117 (29): 16824–16830. doi:10.1073/pnas.2002918117. PMC 7382294. PMID 32632000.
  240. David P.G. Bond; Stephen E. Grasby (2020). "Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation". Geology. 48 (8): 777–781. doi:10.1130/G47377.1.
  241. Zeyang Liu; David Selby; Paul C. Hackley; D. Jeffrey Over (2020). "Evidence of wildfires and elevated atmospheric oxygen at the Frasnian−Famennian boundary in New York (USA): Implications for the Late Devonian mass extinction". GSA Bulletin. in press. doi:10.1130/B35457.1.
  242. Anne-Christine Da Silva; Matthias Sinnesael; Philippe Claeys; Joshua H. F. L. Davies; Niels J. de Winter; L. M. E. Percival; Urs Schaltegger; David De Vleeschouwer (2020). "Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating". Scientific Reports. 10 (1): Article number 12940. doi:10.1038/s41598-020-69097-6. PMC 7395115. PMID 32737336.
  243. Michał Rakociński; Leszek Marynowski; Agnieszka Pisarzowska; Jacek Bełdowski; Grzegorz Siedlewicz; Michał Zatoń; Maria Cristina Perri; Claudia Spalletta; Hans Peter Schönlaub (2020). "Volcanic related methylmercury poisoning as the possible driver of the end-Devonian Mass Extinction". Scientific Reports. 10 (1): Article number 7344. doi:10.1038/s41598-020-64104-2. PMC 7192943. PMID 32355245.
  244. John E. A. Marshall; Jon Lakin; Ian Troth; Sarah M. Wallace-Johnson (2020). "UV-B radiation was the Devonian-Carboniferous boundary terrestrial extinction kill mechanism". Science Advances. 6 (22): eaba0768. doi:10.1126/sciadv.aba0768. PMC 7253167. PMID 32518822.
  245. Brian D. Fields; Adrian L. Melott; John Ellis; Adrienne F. Ertel; Brian J. Fry; Bruce S. Lieberman; Zhenghai Liu; Jesse A. Miller; Brian C. Thomas (2020). "Supernova triggers for end-Devonian extinctions". Proceedings of the National Academy of Sciences of the United States of America. 117. doi:10.1073/pnas.2013774117.
  246. Robert A. Gastaldo; Sandra L. Kamo; Johann Neveling; John W. Geissman; Cindy V. Looy; Anna M. Martini (2020). "The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction". Nature Communications. 11 (1): Article number 1428. doi:10.1038/s41467-020-15243-7. PMC 7080820. PMID 32188857.
  247. Jacopo Dal Corso; Benjamin J. W. Mills; Daoliang Chu; Robert J. Newton; Tamsin A. Mather; Wenchao Shu; Yuyang Wu; Jinnan Tong; Paul B. Wignall (2020). "Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse". Nature Communications. 11 (1): Article number 2962. doi:10.1038/s41467-020-16725-4. PMC 7289894. PMID 32528009.
  248. Martin Schobben; William J. Foster; Arve R. N. Sleveland; Valentin Zuchuat; Henrik H. Svensen; Sverre Planke; David P. G. Bond; Fons Marcelis; Robert J. Newton; Paul B. Wignall; Simon W. Poulton (2020). "A nutrient control on marine anoxia during the end-Permian mass extinction". Nature Geoscience. in press. doi:10.1038/s41561-020-0622-1.
  249. Masayuki Ikeda; Kazumi Ozaki; Julien Legrand (2020). "Impact of 10-Myr scale monsoon dynamics on Mesozoic climate and ecosystems". Scientific Reports. 10 (1): Article number 11984. doi:10.1038/s41598-020-68542-w. PMC 7378230. PMID 32704030.
  250. Adriana C. Mancuso; Cecilia A. Benavente; Randall B. Irmis; Roland Mundil (2020). "Evidence for the Carnian Pluvial Episode in Gondwana: New multiproxy climate records and their bearing on early dinosaur diversification". Gondwana Research. 86: 104–125. doi:10.1016/j.gr.2020.05.009.
  251. Cornelia Rasmussen; Roland Mundil; Randall B. Irmis; Dominique Geisler; George E. Gehrels; Paul E. Olsen; Dennis V. Kent; Christopher Lepre; Sean T. Kinney; John W. Geissman; William G. Parker (2020). "U-Pb zircon geochronology and depositional age models for the Upper Triassic Chinle Formation (Petrified Forest National Park, Arizona, USA): Implications for Late Triassic paleoecological and paleoenvironmental change". GSA Bulletin. in press. doi:10.1130/B35485.1.
  252. Victoria A. Petryshyn; Sarah E. Greene; Alex Farnsworth; Daniel J. Lunt; Anne Kelley; Robert Gammariello; Yadira Ibarra; David J. Bottjer; Aradhna Tripati; Frank A. Corsetti (2020). "The role of temperature in the initiation of the end-Triassic mass extinction". Earth-Science Reviews. 208: Article 103266. doi:10.1016/j.earscirev.2020.103266.
  253. Ibrahim, Nizar; Sereno, Paul C.; Varricchio, David J.; Martill, David M.; Dutheil, Didier B.; Unwin, David M.; Baidder, Lahssen; Larsson, Hans C. E.; Zouhri, Samir; Kaoukaya, Abdelhadi (2020-04-21). "Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco". ZooKeys. 928: 1–216. doi:10.3897/zookeys.928.47517. ISSN 1313-2970. PMC 7188693. PMID 32362741.
  254. Johann P. Klages; Ulrich Salzmann; Torsten Bickert; Claus-Dieter Hillenbrand; Karsten Gohl; Gerhard Kuhn; Steven M. Bohaty; Jürgen Titschack; Juliane Müller; Thomas Frederichs; Thorsten Bauersachs; Werner Ehrmann; Tina van de Flierdt; Patric Simões Pereira; Robert D. Larter; Gerrit Lohmann; Igor Niezgodzki; Gabriele Uenzelmann-Neben; Maximilian Zundel; Cornelia Spiegel; Chris Mark; David Chew; Jane E. Francis; Gernot Nehrke; Florian Schwarz; James A. Smith; Tim Freudenthal; Oliver Esper; Heiko Pälike; Thomas A. Ronge; Ricarda Dziadek; the Science Team of Expedition PS104 (2020). "Temperate rainforests near the South Pole during peak Cretaceous warmth". Nature. 580 (7801): 81–86. doi:10.1038/s41586-020-2148-5. PMID 32238944.
  255. Pincelli M. Hull; André Bornemann; Donald E. Penman; Michael J. Henehan; Richard D. Norris; Paul A. Wilson; Peter Blum; Laia Alegret; Sietske J. Batenburg; Paul R. Bown; Timothy J. Bralower; Cecile Cournede; Alexander Deutsch; Barbara Donner; Oliver Friedrich; Sofie Jehle; Hojung Kim; Dick Kroon; Peter C. Lippert; Dominik Loroch; Iris Moebius; Kazuyoshi Moriya; Daniel J. Peppe; Gregory E. Ravizza; Ursula Röhl; Jonathan D. Schueth; Julio Sepúlveda; Philip F. Sexton; Elizabeth C. Sibert; Kasia K. Śliwińska; Roger E. Summons; Ellen Thomas; Thomas Westerhold; Jessica H. Whiteside; Tatsuhiko Yamaguchi; James C. Zachos (2020). "On impact and volcanism across the Cretaceous-Paleogene boundary". Science. 367 (6475): 266–272. doi:10.1126/science.aay5055. PMID 31949074.
  256. R.M. Dzombak; N.D. Sheldon; D.M. Mohabey; B. Samant (2020). "Stable climate in India during Deccan volcanism suggests limited influence on K–Pg extinction". Gondwana Research. 85: 19–31. doi:10.1016/j.gr.2020.04.007.
  257. Bettina Schaefer; Kliti Grice; Marco J.L. Coolen; Roger E. Summons; Xingqian Cui; Thorsten Bauersachs; Lorenz Schwark; Michael E. Böttcher; Timothy J. Bralower; Shelby L. Lyons; Katherine H. Freeman; Charles S. Cockell; Sean P.S. Gulick; Joanna V. Morgan; Michael T. Whalen; Christopher M. Lowery; Vivi Vajda (2020). "Microbial life in the nascent Chicxulub crater". Geology. 48 (4): 328–332. doi:10.1130/G46799.1.
  258. Anna N. Neretina; Maria A. Gololobova; Alisa A. Neplyukhina; Anton A. Zharov; Christopher D. Rogers; David J. Horne; Albert V. Protopopov; Alexey A. Kotov (2020). "Crustacean remains from the Yuka mammoth raise questions about non-analogue freshwater communities in the Beringian region during the Pleistocene". Scientific Reports. 10 (1): Article number 859. doi:10.1038/s41598-020-57604-8. PMC 6972846. PMID 31964906.
  259. Alfio Alessandro Chiarenza; Anthony R. Fiorillo; Ronald S. Tykoski; Paul J. McCarthy; Peter P. Flaig; Dori L. Contreras (2020). "The first juvenile dromaeosaurid (Dinosauria: Theropoda) from Arctic Alaska". PLOS ONE. 15 (7): e0235078. doi:10.1371/journal.pone.0235078. PMID 32639990.
  260. Wim Van Neer; Francesca Alhaique; Wim Wouters; Katrien Dierickx; Monica Gala; Quentin Goffette; Guido S. Mariani; Andrea Zerboni; Savino di Lernia (2020). "Aquatic fauna from the Takarkori rock shelter reveals the Holocene central Saharan climate and palaeohydrography". PLoS ONE. 15 (2): e0228588. doi:10.1371/journal.pone.0228588. PMC 7029841. PMID 32074116.
  261. Jeffrey D. Stilwell; Andrew Langendam; Chris Mays; Lachlan J. M. Sutherland; Antonio Arillo; Daniel J. Bickel; William T. De Silva; Adele H. Pentland; Guido Roghi; Gregory D. Price; David J. Cantrill; Annie Quinney; Enrique Peñalver (2020). "Amber from the Triassic to Paleogene of Australia and New Zealand as exceptional preservation of poorly known terrestrial ecosystems". Scientific Reports. 10 (1): Article number 5703. doi:10.1038/s41598-020-62252-z. PMC 7118147. PMID 32242031.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.