Evolutionary biology

Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, speciation) that produced the diversity of life on Earth. In the 1930s, the discipline of evolutionary biology emerged through what Julian Huxley called the modern synthesis of understanding, from previously unrelated fields of biological research, such as genetics and ecology, systematics and paleontology.

The investigational range of current research widened to encompass the genetic architecture of adaptation, molecular evolution, and the different forces that contribute to evolution, such as sexual selection, genetic drift, and biogeography. Moreover, the newer field of evolutionary developmental biology ("evo-devo") investigates how embryogenesis, the development of the embryo, is controlled, thus yielding a wider synthesis that integrates developmental biology with the fields of study covered by the earlier evolutionary synthesis.

Subfields

Evolution is the central unifying concept in biology. Biology can be divided in various ways. One way is by the level of biological organization, from molecular to cell, organism to population. An earlier way is by perceived taxonomic group, with fields such as zoology, botany, and microbiology, reflecting what were once seen as the major divisions of life. A third way is by approach, such as field biology, theoretical biology, experimental evolution, and paleontology. These alternative ways of dividing up the subject can be combined with evolutionary biology to create subfields like evolutionary ecology and evolutionary developmental biology.

More recently, the merge between the biological science and applied sciences gave birth to new fields that are extensions of evolutionary biology, including evolutionary robotics, engineering,[1] algorithms,[2] economics,[3] and architecture.[4] The basic mechanisms of evolution are applied directly or indirectly to come up with novel designs or solve problems that are difficult to solve otherwise. The research generated in these applied fields in turn contribute to progress, especially thanks to work on evolution in computer science and engineering fields such as mechanical engineering.[5]

History

The idea of evolution by natural selection was proposed by Charles Darwin in 1859, but evolutionary biology, as an academic discipline in its own right, emerged during the period of the modern synthesis in the 1930s and 1940s.[6] It was not until the 1980s that many universities had departments of evolutionary biology. In the United States, many universities have created departments of molecular and cell biology or ecology and evolutionary biology, in place of the older departments of botany and zoology. Palaeontology is often grouped with earth science.

Microbiology too is becoming an evolutionary discipline, now that microbial physiology and genomics are better understood. The quick generation time of bacteria and viruses such as bacteriophages makes it possible to explore evolutionary questions.

Many biologists have contributed to shaping the modern discipline of evolutionary biology. Theodosius Dobzhansky and E. B. Ford established an empirical research programme. Ronald Fisher, Sewall Wright and J. S. Haldane created a sound theoretical framework. Ernst Mayr in systematics, George Gaylord Simpson in paleontology and G. Ledyard Stebbins in botany helped to form the modern synthesis. James Crow,[7] Richard Lewontin,[8] Dan Hartl,[9] Marcus Feldman,[10][11] and Brian Charlesworth[12] trained a generation of evolutionary biologists.

Current research topics

Current research in evolutionary biology covers diverse topics and incorporates ideas from diverse areas, such as molecular genetics and computer science.

Many physicians do not have enough background in evolutionary biology, making it difficult to use it in modern medicine. [13]

First, some fields of evolutionary research try to explain phenomena that were poorly accounted for in the modern evolutionary synthesis. These include speciation,[14] the evolution of sexual reproduction,[15] the evolution of cooperation, the evolution of ageing, and evolvability.[16]

Second, biologists ask the most straightforward evolutionary question: "what happened and when?". This includes fields such as paleobiology, as well as systematics and phylogenetics.

Third, the modern evolutionary synthesis was devised at a time when nobody understood the molecular basis of genes. Today, evolutionary biologists try to determine the genetic architecture of interesting evolutionary phenomena such as adaptation and speciation. They seek answers to questions such as how many genes are involved, how large are the effects of each gene, how interdependent are the effects of different genes, what do the genes do, and what changes happen to them (e.g., point mutations vs. gene duplication or even genome duplication). They try to reconcile the high heritability seen in twin studies with the difficulty in finding which genes are responsible for this heritability using genome-wide association studies.[17]

One challenge in studying genetic architecture is that the classical population genetics that catalysed the modern evolutionary synthesis must be updated to take into account modern molecular knowledge. This requires a great deal of mathematical development to relate DNA sequence data to evolutionary theory as part of a theory of molecular evolution. For example, biologists try to infer which genes have been under strong selection by detecting selective sweeps.[18]

Fourth, the modern evolutionary synthesis involved agreement about which forces contribute to evolution, but not about their relative importance.[19] Current research seeks to determine this. Evolutionary forces include natural selection, sexual selection, genetic drift, genetic draft, developmental constraints, mutation bias and biogeography.

An evolutionary approach is key to much current research in organismal biology and ecology, such as in life history theory. Annotation of genes and their function relies heavily on comparative approaches. The field of evolutionary developmental biology ("evo-devo") investigates how developmental processes work, and compares them in different organisms to determine how they evolved.

Drug Resistance Today

Evolution plays a role in resistance of drugs. For example, how HIV becomes resistant to medications and the body’s immune system. The mutation of resistance of HIV is due to the natural selection of the survivors and their offspring. The one HIV that survived the immune system reproduced and had offspring that were also resistant to the immune system.[20]  Drug resistance also causes many problems for patients such as a worsening sickness or the sickness can mutate into something that can no longer be cured with medication. Without the proper medicine a sickness can be the death of a patient. If their body has resistance to a certain number of drugs, then the right medicine will be harder and harder to find. Not finishing an antibiotic is also an example of resistance that will cause the bacteria or virus to evolve and continue to spread in the body.[21] When the full dosage of the medication does not enter the body and perform its proper job, the virus and bacteria that survive the initial dosage will continue to reproduce. This makes for another sickness later on that will be even harder to cure because this disease will be resistant to the first medication used. Finishing medicine that is prescribed is a vital step in avoiding antibiotic resistance. Also, those with chronic illnesses, illnesses that last throughout the lifetime, are at a greater risk to antibiotic resistance than others.[22] This is because overuse of a drug or too high of a dosage can cause a patient’s immune system to weaken and the illness will evolve and grow stronger. For example, cancer patients will need a stronger and stronger dosage of medication because of their low functioning immune system.[23]

Journals

Some scientific journals specialise exclusively in evolutionary biology as a whole, including the journals Evolution, Journal of Evolutionary Biology, and BMC Evolutionary Biology. Some journals cover sub-specialties within evolutionary biology, such as the journals Systematic Biology, Molecular Biology and Evolution and its sister journal Genome Biology and Evolution, and Cladistics.

Other journals combine aspects of evolutionary biology with other related fields. For example, Molecular Ecology, Proceedings of the Royal Society of London Series B, The American Naturalist and Theoretical Population Biology have overlap with ecology and other aspects of organismal biology. Overlap with ecology is also prominent in the review journals Trends in Ecology and Evolution and Annual Review of Ecology, Evolution, and Systematics. The journals Genetics and PLoS Genetics overlap with molecular genetics questions that are not obviously evolutionary in nature.

gollark: And that does *not* look like a webhook.
gollark: Um. It's not meant to do that.
gollark: Thanks and yes.
gollark: Also, that wasn't me and the bot doesn't have a feature to do that. Webhooks maybe?
gollark: … has some other server been using it too?

See also

References

  1. "Evolutionary engineering". Archived from the original on 16 December 2016.
  2. "What is an Evolutionary Algorithm?" (PDF). Archived (PDF) from the original on 9 August 2017.
  3. "What economists can learn from evolutionary theorists". Archived from the original on 30 July 2017.
  4. "Investigating architecture and design". 24 February 2009. Archived from the original on 18 August 2017.
  5. Introduction to Evolutionary Computing: A.E. Eiben. Natural Computing Series. Springer. 2003. ISBN 9783642072857. Archived from the original on 1 September 2017.
  6. Smocovitis, Vassiliki Betty (1996). Unifying Biology: The Evolutionary Synthesis and Evolutionary Biology. Princeton, NJ: Princeton University Press. ISBN 0-691-03343-9.
  7. "The Academic Genealogy of Evolutionary Biology: James F. Crow". Archived from the original on 14 May 2012.
  8. "The Academic Genealogy of Evolutionary Biology:Richard Lewontin". Archived from the original on 14 May 2012.
  9. "The Academic Genealogy of Evolutionary Biology: Daniel Hartl". Archived from the original on 14 May 2012.
  10. "Feldman lab alumni & collaborators".
  11. "The Academic Genealogy of Evolutionary Biology: Marcus Feldman". Archived from the original on 14 May 2012.
  12. "The Academic Genealogy of Evolutionary Biology: Brian Charlesworth". Archived from the original on 14 May 2012.
  13. Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G. (26 January 2010). "Making evolutionary biology a basic science for medicine". Proceedings of the National Academy of Sciences. 107 (suppl 1): 1800–1807. doi:10.1073/pnas.0906224106. ISSN 0027-8424. PMID 19918069.
  14. Wiens JJ (2004). "What is speciation and how should we study it?". American Naturalist. 163 (6): 914–923. doi:10.1086/386552. JSTOR 10.1086/386552. PMID 15266388.
  15. Otto SP (2009). "The evolutionary enigma of sex". American Naturalist. 174 (s1): S1–S14. doi:10.1086/599084. PMID 19441962.
  16. Jesse Love Hendrikse; Trish Elizabeth Parsons; Benedikt Hallgrímsson (2007). "Evolvability as the proper focus of evolutionary developmental biology". Evolution & Development. 9 (4): 393–401. doi:10.1111/j.1525-142X.2007.00176.x. PMID 17651363.
  17. Manolio TA; Collins FS; Cox NJ; Goldstein DB; Hindorff LA; Hunter DJ; McCarthy MI; Ramos EM; Cardon LR; Chakravarti A; Cho JH; Guttmacher AE; Kong A; Kruglyak L; Mardis E; Rotimi CN; Slatkin M; Valle D; Whittemore AS; Boehnke M; Clark AG; Eichler EE; Gibson G; Haines JL; Mackay TFC; McCarroll SA; Visscher PM (2009). "Finding the missing heritability of complex diseases". Nature. 461 (7265): 747–753. Bibcode:2009Natur.461..747M. doi:10.1038/nature08494. PMC 2831613. PMID 19812666.
  18. Sabeti PC; Reich DE; Higgins JM; Levine HZP; Richter DJ; Schaffner SF; Gabriel SB; Platko JV; Patterson NJ; McDonald GJ; Ackerman HC; Campbell SJ; Altshuler D; Cooper R; Kwiatkowski D; Ward R; Lander ES (2002). "Detecting recent positive selection in the human genome from haplotype structure". Nature. 419 (6909): 832–837. Bibcode:2002Natur.419..832S. doi:10.1038/nature01140. PMID 12397357.
  19. Provine WB (1988). "Progress in evolution and meaning in life". Evolutionary progress. University of Chicago Press. pp. 49–79.
  20. Baquero, Fernando; Cantón, Rafael (2009). "Evolutionary Biology of Drug Resistance". In Mayers, Douglas L. (ed.). Antimicrobial Drug Resistance. Humana Press. pp. 9–32. doi:10.1007/978-1-59745-180-2_2. ISBN 978-1-60327-592-7.
  21. "What Exactly is Antibiotic Resistance?". Centers for Disease Control and Prevention. 13 March 2020. Retrieved 20 April 2020.
  22. Read, Andrew F.; Huijben, Silvie (27 January 2009). "PERSPECTIVE: Evolutionary biology and the avoidance of antimicrobial resistance: Evolutionary biology and the avoidance of antimicrobial resistance". Evolutionary Applications. 2 (1): 40–51. doi:10.1111/j.1752-4571.2008.00066.x.
  23. "Grußwort Wikimedia Deutschland", Wikipedia und Geschichtswissenschaft, DE GRUYTER, ISBN 978-3-11-037635-7, retrieved 20 April 2020
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.