Evolution of fungi
The evolution of fungi has been going on since fungi diverged from other life around 1.5 billion years ago, [1][2] with the glomaleans branching from the "higher fungi" at ~570 million years ago, according to DNA analysis. (Schüssler et al., 2001; Tehler et al., 2000)[2] Fungi probably colonized the land during the Cambrian, over 500 million years ago, (Taylor & Osborn, 1996)[2] but terrestrial fossils only become uncontroversial and common during the Devonian, 400 million years ago.[2]
Early evolution
Evidence from DNA analysis suggests that all fungi are descended from one common ancestor, at least 600 million years ago. It is probable that these earliest fungi lived in water, and had flagella. Fungi moved to land at about the same time as plants, about 460 million years ago, at least. Fossils of land fungi date to almost 400 million years ago. About 250 million years ago fungi became abundant in many areas, based on the fossil record, and could even have been the dominant forms of life on the earth at that time.[3]
Kingdom Fungi
Fungi were considered to be part of the plant kindgom (subkingdom Cryptogamia) until the mid-20th century. They were divided into four classes: Phycomycetes, Ascomycetes, Basidiomycetes, and Deuteromycetes. In the middle of the 20th century Fungi were considered a distinct kingdom, the newly recognized kingdom Fungi becoming the third major kingdom of multicellular eukaryotes with kingdom Plantae and kingdom Animalia, the distinguishing feature between these kingdoms being the way they obtain nutrition.[4]
Fossil record
A rich diversity of fungi is known from the lower Devonian Rhynie chert; an earlier record is absent. Since fungi do not biomineralise, they do not readily enter the fossil record; there are only three claims of early fungi. One from the Ordovician[5] has been dismissed on the grounds that it lacks any distinctly fungal features, and is held by many to be contamination;[6] the position of a "probable" Proterozoic fungus is still not established,[6] and it may represent a stem group fungus. There is also a case for a fungal affinity for the enigmatic microfossil Ornatifilum. Since the fungi form a sister group to the animals, the two lineages must have diverged before the first animal lineages, which are known from fossils as early as the Ediacaran.[7]
In contrast to plants and animals, the early fossil record of the fungi is meager. Factors that likely contribute to the under-representation of fungal species among fossils include the nature of fungal fruiting bodies, which are soft, fleshy, and easily degradable tissues and the microscopic dimensions of most fungal structures, which therefore are not readily evident. Fungal fossils are difficult to distinguish from those of other microbes, and are most easily identified when they resemble extant fungi.[8] Often recovered from a permineralized plant or animal host, these samples are typically studied by making thin-section preparations that can be examined with light microscopy or transmission electron microscopy.[9] Compression fossils are studied by dissolving the surrounding matrix with acid and then using light or scanning electron microscopy to examine surface details.[10]
The earliest fossils possessing features typical of fungi date to the Paleoproterozoic era, some 2,400 million years ago (Ma); these multicellular benthic organisms had filamentous structures capable of anastomosis, in which hyphal branches recombine.[11] Other recent studies (2009) estimate the arrival of fungal organisms at about 760–1060 Ma on the basis of comparisons of the rate of evolution in closely related groups.[12] For much of the Paleozoic Era (542–251 Ma), the fungi appear to have been aquatic and consisted of organisms similar to the extant Chytrids in having flagellum-bearing spores.[13] Phylogenetic analyses suggest that the flagellum was lost early in the evolutionary history of the fungi, and consequently, the majority of fungal species lack a flagellum.[14] The evolutionary adaptation from an aquatic to a terrestrial lifestyle necessitated a diversification of ecological strategies for obtaining nutrients, including parasitism, saprobism, and the development of mutualistic relationships such as mycorrhiza and lichenization.[15] Recent (2009) studies suggest that the ancestral ecological state of the Ascomycota was saprobism, and that independent lichenization events have occurred multiple times.[16]
In May 2019, scientists reported the discovery of a fossilized fungus, named Ourasphaira giraldae, in the Canadian Arctic, that may have grown on land a billion years ago, well before plants were living on land.[17][18][19] Earlier, it had been presumed that the fungi colonized the land during the Cambrian (542–488.3 Ma), also long before land plants.[2] Fossilized hyphae and spores recovered from the Ordovician of Wisconsin (460 Ma) resemble modern-day Glomerales, and existed at a time when the land flora likely consisted of only non-vascular bryophyte-like plants.[20] Prototaxites, which was probably a fungus or lichen, would have been the tallest organism of the late Silurian. Fungal fossils do not become common and uncontroversial until the early Devonian (416–359.2 Ma), when they are abundant in the Rhynie chert, mostly as Zygomycota and Chytridiomycota.[2][21][22] At about this same time, approximately 400 Ma, the Ascomycota and Basidiomycota diverged,[23] and all modern classes of fungi were present by the Late Carboniferous (Pennsylvanian, 318.1–299 Ma).[24]
Lichen-like fossils have been found in the Doushantuo Formation in southern China dating back to 635–551 Ma.[25] Lichens were a component of the early terrestrial ecosystems, and the estimated age of the oldest terrestrial lichen fossil is 400 Ma;[26] this date corresponds to the age of the oldest known sporocarp fossil, a Paleopyrenomycites species found in the Rhynie Chert.[27] The oldest fossil with microscopic features resembling modern-day basidiomycetes is Palaeoancistrus, found permineralized with a fern from the Pennsylvanian.[28] Rare in the fossil record are the homobasidiomycetes (a taxon roughly equivalent to the mushroom-producing species of the agaricomycetes). Two amber-preserved specimens provide evidence that the earliest known mushroom-forming fungi (the extinct species Archaeomarasmius legletti) appeared during the mid-Cretaceous, 90 Ma.[29][30]
Some time after the Permian-Triassic extinction event (251.4 Ma), a fungal spike (originally thought to be an extraordinary abundance of fungal spores in sediments) formed, suggesting that fungi were the dominant life form at this time, representing nearly 100% of the available fossil record for this period.[31] However, the relative proportion of fungal spores relative to spores formed by algal species is difficult to assess,[32] the spike did not appear worldwide,[33][34] and in many places it did not fall on the Permian-Triassic boundary.[35]
65 million years ago, immediately after the Cretaceous-Tertiary (K-T) extinction that famously killed off most dinosaurs, there is a dramatic increase in evidence of fungi, apparently the death of most plant and animal species leading to a huge fungal bloom like "a massive compost heap".[36] The lack of K-T extinction in fungal evolution is also supported by molecular data, because phylogenetic comparative analyses of a tree consist of 5,284 mushroom species (Agaricomycetes) didn't show signal for a mass extinction event around the Cretaceous-Tertiary boundary.[37]
References
- Wang, D.Y.C.; Kumar, S.; Hedges, S.B. (1999). "Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi". Proceedings of the Royal Society of London B. 266 (1415): 163–171. doi:10.1098/rspb.1999.0617. PMC 1689654. PMID 10097391.
- Brundrett M.C. (2002). "Coevolution of roots and mycorrhizas of land plants". New Phytologist. 154 (2): 275–304. doi:10.1046/j.1469-8137.2002.00397.x.
- "CK12-Foundation". flexbooks.ck12.org. Retrieved 2020-05-19.
- "Fungus - Evolution and phylogeny of fungi". Encyclopedia Britannica. Retrieved 2020-05-19.
- Redecker, D.; Kodner, R.; Graham, L.E. (2000). "Glomalean Fungi from the Ordovician". Science. 289 (5486): 1920–1. Bibcode:2000Sci...289.1920R. doi:10.1126/science.289.5486.1920. PMID 10988069. S2CID 43553633.
- Butterfield, N.J. (2005). "Probable Proterozoic fungi". Paleobiology. 31 (1): 165–182. doi:10.1666/0094-8373(2005)031<0165:PPF>2.0.CO;2.
- Miller, A.J. (2004). "A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications" (PDF). Retrieved 2007-04-24.
- Donoghue MJ, Cracraft J (2004). Assembling the tree of life. Oxford (Oxfordshire): Oxford University Press. p. 187. ISBN 978-0-19-517234-8.
- Taylor and Taylor, p. 19.
- Taylor and Taylor, pp. 7–12.
- Bengtson, Stefan; Rasmussen, Birger; Ivarsson, Magnus; Muhling, Janet; Broman, Curt; Marone, Federica; Stampanoni, Marco; Bekker, Andrey (24 April 2017). "Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt". Nature Ecology & Evolution. 1 (6): 0141. doi:10.1038/s41559-017-0141. ISSN 2397-334X. PMID 28812648.
- Lucking R, Huhndorf S, Pfister D, Plata ER, Lumbsch H (2009). "Fungi evolved right on track". Mycologia. 101 (6): 810–822. doi:10.3852/09-016. PMID 19927746.
- James TY; et al. (2006). "Reconstructing the early evolution of Fungi using a six-gene phylogeny". Nature. 443 (7113): 818–22. Bibcode:2006Natur.443..818J. doi:10.1038/nature05110. PMID 17051209.
- Liu YJ, Hodson MC, Hall BD (2006). "Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes". BMC Evolutionary Biology. 6 (1): 74. doi:10.1186/1471-2148-6-74. PMC 1599754. PMID 17010206.
- Taylor and Taylor, pp. 84–94 and 106–107.
- Schoch CL; Sung G-H; López-Giráldez F; et al. (2009). "The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits". Systematic Biology. 58 (2): 224–39. doi:10.1093/sysbio/syp020. PMID 20525580.
- Zimmer, Carl (22 May 2019). "How Did Life Arrive on Land? A Billion-Year-Old Fungus May Hold Clues - A cache of microscopic fossils from the Arctic hints that fungi reached land long before plants". The New York Times. Retrieved 23 May 2019.
- Loron, Corentin C.; François, Camille; Rainbird, Robert H.; Turner, Elizabeth C.; Borensztajn, Stephan; Javaux, Emmanuelle J. (22 May 2019). "Early fungi from the Proterozoic era in Arctic Canada". Nature. Springer Science and Business Media LLC. 570 (7760): 232–235. Bibcode:2019Natur.570..232L. doi:10.1038/s41586-019-1217-0. ISSN 0028-0836. PMID 31118507.
- Timmer, John (22 May 2019). "Billion-year-old fossils may be early fungus". Ars Technica. Retrieved 23 May 2019.
- Redecker D, Kodner R, Graham LE.; Kodner; Graham (2000). "Glomalean fungi from the Ordovician". Science. 289 (5486): 1920–21. Bibcode:2000Sci...289.1920R. doi:10.1126/science.289.5486.1920. PMID 10988069. S2CID 43553633.CS1 maint: multiple names: authors list (link)
- Taylor TN, Taylor EL (1996). "The distribution and interactions of some Paleozoic fungi". Review of Palaeobotany and Palynology. 95 (1–4): 83–94. doi:10.1016/S0034-6667(96)00029-2.
- Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R (2009). "Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert". Mycological Progress. 8 (1): 9–18. doi:10.1007/s11557-008-0573-1. hdl:1808/13680.
- Taylor JW, Berbee ML (2006). "Dating divergences in the Fungal Tree of Life: review and new analyses". Mycologia. 98 (6): 838–49. doi:10.3852/mycologia.98.6.838. PMID 17486961.
- Blackwell M, Vilgalys R, James TY, Taylor JW (2009). "Fungi. Eumycota: mushrooms, sac fungi, yeast, molds, rusts, smuts, etc". Tree of Life Web Project. Retrieved 2009-04-25.
- Yuan X, Xiao S, Taylor TN.; Xiao; Taylor (2005). "Lichen-like symbiosis 600 million years ago". Science. 308 (5724): 1017–20. Bibcode:2005Sci...308.1017Y. doi:10.1126/science.1111347. PMID 15890881. S2CID 27083645.CS1 maint: multiple names: authors list (link)
- Karatygin IV, Snigirevskaya NS, Vikulin SV (2009). "The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation". Paleontological Journal. 43 (1): 107–14. doi:10.1134/S0031030109010110.
- Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005). "Perithecial Ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism". Mycologia. 97 (1): 269–85. doi:10.3852/mycologia.97.1.269. hdl:1808/16786. PMID 16389979.
- Dennis RL. (1970). "A Middle Pennsylvanian basidiomycete mycelium with clamp connections". Mycologia. 62 (3): 578–84. doi:10.2307/3757529. JSTOR 3757529.
- Hibbett DS, Grimaldi D, Donoghue MJ.; Grimaldi; Donoghue (1995). "Cretaceous mushrooms in amber". Nature. 377 (6549): 487. Bibcode:1995Natur.377..487H. doi:10.1038/377487a0.CS1 maint: multiple names: authors list (link)
- Hibbett DS, Grimaldi D, Donoghue MJ (1997). "Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes". American Journal of Botany. 84 (7): 981–91. doi:10.2307/2446289. JSTOR 2446289. S2CID 22011469.
- Eshet Y, Rampino MR, Visscher H.; Rampino; Visscher (1995). "Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary". Geology. 23 (1): 967–70. Bibcode:1995Geo....23..967E. doi:10.1130/0091-7613(1995)023<0967:FEAPRO>2.3.CO;2. S2CID 58937537.CS1 maint: multiple names: authors list (link)
- Foster CB, Stephenson MH, Marshall C, Logan GA, Greenwood PF (2002). "A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities". Palynology. 26 (1): 35–58. doi:10.2113/0260035.
- López-Gómez J, Taylor EL (2005). "Permian-Triassic transition in Spain: a multidisciplinary approach". Palaeogeography, Palaeoclimatology, Palaeoecology. 229 (1–2): 1–2. doi:10.1016/j.palaeo.2005.06.028.
- Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg-van Cittert JHA, Visscher H.; Twitchett; Dilcher; Van Konijnenburg-Van Cittert; Visscher (2005). "Life in the end-Permian dead zone". Proceedings of the National Academy of Sciences USA. 98 (14): 7879–83. Bibcode:2001PNAS...98.7879L. doi:10.1073/pnas.131218098. PMC 35436. PMID 11427710.
See image 2
CS1 maint: multiple names: authors list (link) - Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R.; Botha; Buick; De Kock; Erwin; Garrison; Kirschvink; Smith (2005). "Abrupt and gradual extinction among late Permian land vertebrates in the Karoo Basin, South Africa". Science. 307 (5710): 709–14. Bibcode:2005Sci...307..709W. CiteSeerX 10.1.1.503.2065. doi:10.1126/science.1107068. PMID 15661973.CS1 maint: multiple names: authors list (link)
- Fungi and the Rise of Mammals
That ecological calamity was accompanied by massive deforestation, an event followed by a fungal bloom, as the earth became a massive compost. - Varga, Torda; Krizsán, Krisztina; Földi, Csenge; Dima, Bálint; Sánchez-García, Marisol; Sánchez-Ramírez, Santiago; Szöllősi, Gergely J.; Szarkándi, János G.; Papp, Viktor (2019-03-18). "Megaphylogeny resolves global patterns of mushroom evolution". Nature Ecology & Evolution. 3 (4): 668–678. doi:10.1038/s41559-019-0834-1. ISSN 2397-334X. PMC 6443077. PMID 30886374.