Energy in the United States

Energy in the United States comes mostly from fossil fuels: in 2010, data showed that 25% of the nation's energy originates from petroleum, 22% from coal, and 22% from natural gas. Nuclear energy supplied 8.4% and renewable energy supplied 8%,[2] mainly from hydroelectric dams and biomass; however, this also includes other renewable sources like wind, geothermal, and solar.[3]

Pumping rig at the Sergeant Major well in McKenzie County, North Dakota

United States total primary energy consumption by fuel in 2018[1]

  Petroleum (36%)
  Natural gas (31%)
  Coal (13%)
  Nuclear (8%)
  Renewable energy (11%)

The United States was the second-largest energy consumer in 2010 after China.[4] The country is ranked seventh in energy consumption per capita after Canada and several small nations.[5][6] As of 2006, the country's energy consumption had increased more rapidly than domestic energy production over the last 50 years in the nation (when they were roughly equal). This difference was largely met through imports.[7] Not included is the significant amount of energy used overseas in the production of retail and industrial goods consumed in the United States.

According to the Energy Information Administration's statistics, the per-capita energy consumption in the US has been somewhat consistent from the 1970s to the present time. The average was about 334 million British thermal units [BTU] (352 GJ) per person from 1980 to 2010. One explanation suggested that the energy required to increase the nation's consumption of manufactured equipment, cars, and other goods has been shifted to other countries producing and transporting those goods to the US with a corresponding shift of green house gases and pollution. In comparison, the world average increased from 63.7 to 75 million BTU (67.2 to 79.1 GJ) per person between 1980 and 2008.

History

US energy consumption by source, 17762016. Vertical axis is in quadrillion BTU.

From its founding until the late 19th century, the United States was a largely agrarian country with abundant forests. During this period, energy consumption overwhelmingly focused on readily available firewood. Rapid industrialization of the economy, urbanization, and the growth of railroads led to increased use of coal, and by 1885 it had eclipsed wood as the nation's primary energy source.

Coal remained dominant for the next seven decades, but by 1950, it was surpassed in turn by both petroleum and natural gas. The 1973 oil embargo precipitated an energy crisis in the United States.[8][9] In 2007, coal consumption was the highest it has ever been, with it mostly being used to generate electricity.[10] Natural gas has replaced coal as the preferred source of heating in homes, businesses, and industrial furnaces, which burns cleaner and is easier to transport.

Although total energy use increased by approximately a factor of 50 between 1850 and 2000, energy use per capita increased only by a factor of four. As of 2009, United States per-capita energy use had declined to 7.075 tonnes of oil equivalent (296.2 GJ), 12% less than 2000, and in 2010, to levels not seen since the 1960s.[11] At the beginning of the 20th century, petroleum was a minor resource used to manufacture lubricants and fuel for kerosene and oil lamps. One hundred years later it had become the preeminent energy source for the United States and the rest of the world. This rise closely paralleled the emergence of the automobile as a major force in American culture and the economy.

While petroleum is also used as a source for plastics and other chemicals, and powers various industrial processes, today two-thirds of oil consumption in the US is in the form of its derived transportation fuels.[12] Oil's unique qualities for transportation fuels in terms of energy content, cost of production, and speed of refueling all contributed to it being used over other fuels.

In June 2010, the American Energy Innovation Council, a group which includes Bill Gates, founder of Microsoft; Jeffrey R. Immelt, chief executive of General Electric; and John Doerr,[13] has urged the government to more than triple spending on energy research and developmentto $16 billion a year. Gates endorsed the administration's goal of reducing greenhouse gas emissions by 80% by 2050, but said that was not possible with today's technology or politicism. He said that the only way to find such disruptive new technology was to pour large sums of money at the problem. The group notes that the federal government spends less than $5 billion a year on energy research and development, not counting one-time stimulus projects. About $30 billion is spent annually on health research and more than $80 billion on military research and development. They advocate for a jump in spending on basic energy research.[14]

Summary

Energy in the United States[15]
Population
(million)
Prim. energy
(PJ)
Production
(PJ)
Import
(PJ)
Electricity
(PJ)
CO2 emission
(Mt)
2004294.097,38068,70629,91614,1165,800
2007302.197,97069,71829,89114,8075,769
2008304.595,61671,42826,56414,9625,596
2009307.590,55870,60723,40414,2635,195
2010310.192,79472,20222,33814,9155,369
2012312.091,74274,72519,15914,8575,287
2012R314.389,62275,63215,69614,6485,074
2013316.591,62478,75412,91014,7965,120
Change 200420105.5%-4.7%5.1%-25.3%5.7%-7.4%
Mtoe = 41,868 TJ>, Prim. energy includes energy losses that are 2/3 for nuclear power[16]

2012R = CO2 calculation criteria changed, numbers updated

US primary energy consumption by source and sector (2017)[17]
Supply sources Percent of source Demand sectors Percent of sector
Petroleum
36.2%
72% Transportation
23% Industrial
5% Residential and commercial
1% Electric power
Transportation
28.1%
92% Petroleum
3% Natural gas
5% Renewable energy
Natural gas
28.0%
3% Transportation
35% Industrial
28% Residential and commercial
34% Electric power
Industrial
21.9%
38% Petroleum
45% Natural gas
5% Coal
12% Renewable energy
Coal
13.9%
9% Industrial
<1% Residential and commercial
91% Electric power
Residential and commercial
10.4%
16% Petroleum
76% Natural gas
<1% Coal
8% Renewable energy
Renewable energy
11.0%
13% Transportation
23% Industrial
7% Residential and commercial
57% Electric power
Electric power
37.2%
1% Petroleum
26% Natural gas
34% Coal
17% Renewable energy
23% Nuclear electric power
Nuclear electric power
8.4%
100% Electric power

Note: Sum of components may not equal 100% due to independent rounding.

Primary energy consumption

US energy flow, 2019. A quad is 1015 BTU, or 1.055 × 1018 joules (1.055 EJ). Note the breakdown of useful and waste energy in each sector (dark vs. light grey) due to the nature of heat engines, which cannot convert all thermal energy into useful work and consequently lose a portion of their heat to the environment.
US primary energy consumption by source and sector, 2017. From the US Energy Information Administration (Department of Energy).

Primary energy use in the United States was 90,558 petajoules [PJ] (25,155 TWh) or about 294,480 megajoules [MJ] (81,800 kWh) per person in 2009. Primary energy use was 3,960 PJ (1,100 TWh) less in the United States than in China in 2009. The share of energy import was 26% of the primary energy use. The energy import declined about 22% and the annual CO2 emissions about 10% in 2009 compared to 2004.[18]

Total primary energy consumption (Mtoe)[19]
19901991199219931994199519961997199819992000
1,9141,929.61,967.52,000.92,041.32,067.32,118.42,140.72,167.22,215.92,269
2001200220032004200520062007200820092010201120102011CAGR 2001-11
2,2262,2562,2612,3082,3192,2972,3382,2782,1652,2182,192-1.1%-0.04%
2012 2013 2014 2015 2016 2017 2018
2,152 2,196 2,217 2.194 2,172 2,180 2,258

Energy consumption by source

Energy consumption by source in 2006 (PJ)
Fuel type United States[20] World[21]
Oil42,156181,188
Gas23,400113,940
Coal23,760134,568
Hydroelectric3,02431,356
Nuclear8,67629,304
Geothermal, wind,
solar, wood, waste
3,4204,968
Total105,336498,276

Petroleum

Oil is one of the largest sources of energy in the United States. The United States influences world oil reserves for both growth and development.[22] As the 20th century progressed, petroleum gained increasing importance by providing heating and electricity to the commercial and industrial sectors. Oil was also used in transportation; first for railroads and later for motor vehicles.[23]

As automobiles became more affordable, demand for oil quickly rose. Since the rise of the automobile industry, oil price, demand, and production have all increased as well. Between 1900 and 1980, fuel was directly correlated with Gross National Product (GNP). Furthermore, oil shocks have often coincided with recessions, and the government has responded to oil shocks in several ways.[24] In the 1920s, oil prices were peaking and many commentators believed that oil supplies were running out. Congress was confronted by requests to augment supplies, so a generous depletion allowance was enacted for producers in 1926, which increased investment returns substantially. This change induced additional exploration activity, and subsequently the discovery of large new oil reservoirs.[25]

In the next decade the situation was reversed with prices low and dropping. This resulted in demands for more "orderly" competition and set minimum oil prices. Rather than repealing the previous policies enacted in the 1920s, Congress enacted a price-support system. Similar cycles have occurred in the 1950s and 1970s.[25]

Gas

Natural gas production, 19002013

Natural gas was the largest source of energy production in the United States in 2016, representing 33% of all energy produced in the country.[26] Natural gas has been the largest source of electrical generation in the United States since July 2015.

The United States has been the world's largest producer of natural gas since 2009, when it surpassed Russia. US natural gas production achieved new record highs for each year from 2011 through 2015. Marketed natural gas production in 2015 was 28.8 trillion cubic feet (820 billion cubic metres), a 5.4% increase over 2014, and a 52% increase over the production of 18.9 trillion cu ft (540 billion m3) per day in 2005.[27]

Because of the greater supply, consumer prices for natural gas are significantly lower in the United States than in Europe and Japan.[28] The low price of natural gas, together with its smaller carbon footprint compared to coal, has encouraged a rapid growth in electricity generated from natural gas.

Between 2005 and 2014, US production of natural gas liquids (NGLs) increased 70%, from 1.74 million barrels of oil equivalent (10.6 PJ) per day in 2005 to 2.96 million barrels of oil equivalent (18.1 PJ) per day in 2014. The US has been the world's leading producer of natural gas liquids since 2010, when US NGL production passed that of Saudi Arabia.

Although the United States leads the world in natural gas production, it is only fifth in proved reserves of natural gas, behind Russia, Iran, Qatar, and Turkmenistan.

Coal

Generation of electricity is the largest user of coal, although its use is in decline. About 50% of electric power was produced by coal in 2005, declining to 30% in 2016.[29]:1 Electric utilities buy more than 90% of the coal consumed in the United States.[30]

The United States is a net exporter of coal. Coal exports, for which Europe is the largest customer, peaked in 2012 and have declined since. In 2015, the US exported 7.0% of mined coal.[31]

Coal has been used to generate electricity in the United States since an Edison plant was built in New York City in 1882.[32] The first AC power station was opened by General Electric in Ehrenfeld, Pennsylvania in 1902, servicing the Webster Coal and Coke Company.[32] By the mid-20th century, coal had become the leading fuel for generating electricity in the US. The long, steady rise of coal-fired generation of electricity shifted to a decline after 2007. The decline has been linked to the increased availability of natural gas, decreased consumption,[33] renewable electricity, and more stringent environmental regulations. The Environmental Protection Agency has advanced restrictions on coal plants to counteract mercury pollution, smog, and global warming.

Hydroelectricity

Nuclear

Other renewables

Final energy consumption

Consumption by sector

The US Department of Energy tracks national energy consumption in four broad sectors: industrial, transportation, residential, and commercial. The industrial sector has long been the country's largest energy user, currently representing about 33% of the total. Next in importance is the transportation sector followed by the residential and commercial sectors.

Sector summary
Sector name Description Major uses[34][35][36]
Industrial Facilities and equipment used for producing and processing goods. 22% chemical production
16% petroleum refining
14% metal smelting/refining
Transportation Vehicles which transport people/goods on ground, air, or water. 61% gasoline fuel
21% diesel fuel
12% aviation
Residential Living quarters for private households. 32% space heating
13% water heating
12% lighting
11% air conditioning
8% refrigeration
5% electronics
5% wet-clean (mostly clothes dryers)
Commercial Service-providing facilities and equipment (businesses, government, other institutions). 25% lighting
13% heating
11% cooling
6% refrigeration
6% water heating
6% ventilation
6% electronics

Regional variation

2017 residential sector energy price estimates (U.S. dollars per million Btus) from the Energy Information Administration. States with residential sector energy price estimates higher than the United States as a whole in dark green.[37]
Residential energy consumption per capita by state[38]
Average annual residential electricity usage by city, 20002005. Measured in kWh per customer.[39]

Household energy use varies significantly across the United States. An average home in the Pacific region (consisting of California, Oregon, and Washington) consumes 35% less energy than a home in the South Central region. Some of the regional differences can be explained by climate. The heavily populated coastal areas of the Pacific states experience generally mild winters and summers, reducing the need for both home heating and air conditioning. The warm, humid climates of the South Central and South Atlantic regions lead to higher electricity usage, while the cold winters experienced in the Northeast and North Central regions result in much higher consumption of natural gas and heating oil. The state with the lowest per-capita energy use is New York, at 205 million BTU (216 GJ; 60 MWh) per year,[40] and the highest is Wyoming, at slightly over 1 billion BTU (1,100 GJ; 290 MWh) per year.[41]

Other regional differences stem from energy efficiency measures taken at the local and state levels. California has some of the strictest environmental laws and building codes in the country, leading its per-household energy consumption to be lower than all other states except Hawaii.

The land-use decisions of cities and towns also explain some of the regional differences in energy use. Townhouses are more energy efficient than single-family homes because less heat, for example, is wasted per person. Similarly, areas with more homes in a compact neighborhood encourage walking, biking and transit, thereby reducing transportation energy use. A 2011 US EPA study found that multi-family homes in urban neighborhoods, with well-insulated buildings and fuel-efficient cars, can save more than 2/3 of the energy used by conventionally built single-family houses in suburban areas (with standard cars).[42]

Electricity


The United States is the world's second largest producer and consumer of electricity.[43] It consumes about 20%[44] of the world's electricity supply. This section provides a summary of the consumption and generation of the nation's electric industry, based on data mined from US DOE Energy Information Administration/Electric Power Annual 2018 files.[45] Data was obtained from the most recent DOE Energy Information Agency (EIA) files. Consumption is detailed from the residential, commercial, industrial, and other user communities. Generation is detailed for the major fuel sources of coal, natural gas, nuclear, petroleum, hydro, and the other renewables of wind, wood, other biomass, geothermal, and solar. Changes to the electrical energy fuel mix and other trends are identified. Progress in wind and solar contributing to the energy mix are addressed.

Consumption

Electricity consumption in this section is based upon data mined from US DOE Energy Information Administration/Electric Power Annual 2018 files[46] In 2018 the total US consumption of electricity was 4,222.5 terawatt-hours (TWh) or 15201 PJ. Consumption was up from 2017, by 131.9 TWh (475 PJ) or +3.2%. This is broken down as:

  • Residential customers (133.89 million) directly consumed 1,469.09 TWh (5289 PJ), or 34.74% of the total. This was up 90.5 TWh (326 PJ) or 6.5% from 2017. An average residential customer used 914 kWh (3290 MJ) per month and with the average US residential cost of $0.1287/kWh ($ 0.03575/MJ) the average monthly electrical bill would be $117.67, up slightly from 2017.[45]
  • Commercial customers (18.605 million) directly consumed 1,381.76 TWh (4974 PJ) or 32.72% of the total. This was more (28.86 TWh or 104 PJ) than in 2017 with over 246K new customers. An average commercial customer used 6,189 kWh (22,280 MJ) per month and with the average US commercial electric cost of $0.1067/kWh ($0.0296/MJ) the average monthly electrical bill would be $660.36. [45]
  • Industrial customers (840,321, flat with 2017) directly consumed 1000.7 TWh (3603 PJ) or 23.70% of the total. This was a little more (16.4 TWh or 59 PJ) than in 2017 (+1.6%).
  • Transportation customers (83) directly consumed 7.665 TWh (27,594 MJ) or 0.18% of the total. This was a little higher (0.14 TWh or 1PJ) than in 2017.
  • System loss throughout the total electrical grid infrastructure by direct use of the suppliers (144.1 TWh or 519 PJ)[47] and for transmission and other system losses and for unaccounted for loads (219.2 TWh or 789 PJ) amounts to 363.3 TWh (1308 PJ)or 8.6% of the total which is down by 0.4% from 2017. Thus, the US electric distribution system is 91.4% efficient and efficiency has improved slightly over the last year.[48]

A profile of the electric energy consumption[50] for 2018 is shown in one of the above graphs. The April minimum of 304 TWh (1,090 PJ) to the July peak of 416 TWh (1,500 PJ) shows the monthly range of consumption variations.

In addition to consumption from the electrical grid, the US consumers consumed an estimated additional 35.04 TWh from small scale solar systems. This will be included in the per capita data below.

Electricity consumption per capita is based upon data mined from US DOE Energy Information Administration/Electric Power Annual 2018 files[51] Population[52] data is from Demographics of the United States. Per-capita consumption in 2018 is 13,004 kWh (46,810 MJ). This is up 372 kWh (1,340 MJ) from 2017, down 4.6% from a decade ago, and down 6.4% from its peak in 2007. The following table shows the yearly US per-capita consumption from 2013 to 2019.

Electricity per capita in the United States, 20132017
Year Population (Thousands) Per-capita consumption (kWh)
2019 328,94012,772
2018 326,98013,004
2017 325,71912,632
2016 323,12812,861
2015 320,89712,915
2014 318,85713,005
2013 316,12913,010

Generation

Power plants map
2009-2019 Profile of US Electric Energy by Fuel Source

The United States has an installed summer electricity generation capacity of 1,084.37 GW in 2018, up 11.91 GW from 2017.[53] The US electricity generation was 4,178.08 TWh (15,041.1 PJ) in 2018.[54] The US also imported 58.26 TWh (209.7 PJ) and exported 13.805 TWh (49.70 PJ), for a total of 4,222.5 TWh (15,201 PJ) of electrical energy use in the US.[55] Electrical energy generated from coal was 1,149.49 TWh or 4,138.2 PJ (27.22%); natural and other gases, 1,482.20 TWh (35.11%); nuclear, 807.08 TWh or 2,905.5 PJ (19.11%); hydro, 292.52 TWh or 1,053.1 PJ (6.93%); Renewables (other than hydro), 413.30 TWh or 1,487.9 PJ (9.81%); imports less exports, 44.465 TWh or 160.07 PJ (1.05%); petroleum, 25.23 TWh or 90.8 PJ (0.60%); and miscellaneous (including pumped storage), 7.07 TWh or 25.5 PJ (0.17%). The US's renewable sources (hydro reported separately) are wind, 272.67 TWh or 981.6 PJ (6.46%); wood, 40.94 TWh or 147.4 PJ (0.97%); other biomass, 20.90 TWh or 75.2 PJ (0.49%); geothermal, 15.97 TWh or 57.5 PJ (0.38%) and solar, 63.83 TWh or 229.8 PJ (1.51%).[45] Small-scale solar is estimated to have produced an additional 29.54 TWh (106.3 PJ). Natural gas electricity generation exceeded generation from coal for the first time in 2016 and continued its expansion in 2018.

The following tables summarize the electrical energy generated by fuel source for the United States. Preliminary data from Electric Power Monthly for the 2019 data [56] was used throughout the rest of this section.

Electricity generation in the United States in 2019[57][58]
Power Source Plants Summer Capacity (GW) % of total Capacity Capacity factor Annual Energy (billion kWh) % of Total US
Coal 336229.2420.83%0.481966.1523.24%
Nat Gas+ 1900479.1443.54%0.3801595.4538.38%
Nuclear 6098.078.91%0.942809.4119.47%
Hydro 145879.757.25%0.392273.716.58%
Other Renewables 4667156.8214.25%0.325446.7310.75%
Petroleum 1087322.91%0.06618.570.45%
Other 1712.560.23%0.59313.300.32%
Storage 4022.882.08%-0.026-5.26-0.13%
Net Imports 39.040.94%
Total 97191100.46100.00%0.4324157.09100.00%
2009–2019 US Electric Energy Generation by Renewables
Electric production by renewables in 2019[56]
Power Source Summer Capacity (GW) % of Renewable Capacity % of Total Capacity Capacity Factor Annual Energy (billion kWh) % of Renewable Energy % of US Generation
Wind 103.5843.78%9.41%0.331300.0741.65%7.22%
Hydro 79.7533.71%7.25%0.392273.7137.99%6.58%
Solar 37.3315.78%3.39%0.22172.2310.03%1.74%
Biomass 13.455.69%1.22%0.49658.418.11%1.41%
Geothermal 2.461.04%0.22%0.74316.012.22%0.39%
Total 236.57100%21.50%0.348720.43100%17.33%

Note: Biomass includes wood and wood derived fuel, landfill gas, biogenic municipal solid waste and other waste biomass.

Electricity generation by source

2018 Electric Energy Generation Profile
Electricity generation by source (TWh per year)[54][59]
Year Fossil fuel Nuclear Renewable Misc5 Total6
Coal Oil Gas1 Subtotal Hydro2 Geothermal Solar3 Wind Wood Bio4
other
Subtotal
20197 966.14818.5671595.4492580.164809.409273.70716.01172.234300.07139.85118.561720.43547.0854157.093
Proportion 20197 23.24% 0.45% 38.38% 62.07% 19.47% 6.58% 0.39% 1.74% 7.22% 0.96% 0.45% 17.33% 1.13% 100.0%
2018 1,149.4925.231,482.402,657.11807.08292.5215.9763.83272.6740.9420.90706.8251.53 4222.532
Proportion 2018 27.22% 0.60% 35.11% 62.93% 19.11% 6.93% 0.38% 1.51% 6.46% 0.97% 0.49% 16.74% 1.22% 100.0%
2017 1,205.8421.391,308.892,536.12804.95300.3315.9353.29254.3041.1521.61686.6162.904,090.58
Proportion 2017 29.48%0.52% 32.00%62.00%19.68%7.34%0.39%1.30%6.22%1.01%0.53%16.79%1.54%100.0%
2016 1,239.1524.201,391.112,654.47805.69267.8115.8336.05226.9940.9521.81609.4567.494,137.10
Proportion 2016 29.95%0.59% 33.63%64.16%19.47%6.47%0.38%0.87%5.49%0.99%0.53%14.73%1.63%100.0%
2015 1,352.4028.251,346.602,727.25797.18249.0815.9224.89190.7241.9321.70544.2475.614,144.27
Proportion 2015 32.63%0.68%32.49%65.81%19.24%6.01%0.38%0.60%4.6%01.01%0.52%13.13%1.82%100.0%
2014 1,581.7130.231,138.632,750.57797.17259.3715.8817.69181.65542.3421.65538.5860.504,146.2
2013 1,581.1227.161,137.692,745.97789.02268.5715.789.04167.844020.83522.0755.644,112.7
2012 1,514.0423.191,237.792,775.02769.33276.2415.564.33140.8237.819.82494.5756.14095
2011 1,733.430.21,025.32,788.9790.2319.415.31.82120.237.419.2513.32464138.4
2010 1,847.337.1999.02,883.4807.0260.215.21.2194.737.218.9427.433.34,151.0
Proportion 2010 44.5%0.9%24.1%69.5%19.4%6.3%0.37%0.029%2.3%0.9%0.5%10.3%0.8%100.0%
2009 1,755.938.9931.62,726.5798.9273.415.00.8973.936.118.4417.741.43,984.4
2008 1,985.846.2894.72,926.7806.2254.814.80.8655.437.317.7380.938.34,152.2
20072,016.565.7910.02,992.2806.4247.514.60.6134.539.016.5352.736.64,188.0
2000 1,9661116152,692754260140.495.637.623318.738.63,836
Proportion 2000 51.3%2.9%16.0%70.2%19.7%7.2%0.37%0.013%0.15%1.0%0.6%9.3%0.9%100.0%
1999 1,88111857l2,570728319.514.80.504.53722.6392.8553,723.8

Notes: 1 Gas includes natural gas and other gases. 2 Hydro excludes pumped storage (not an energy source, used by all sources, other than hydro). 3 Solar includes photovoltaics and thermal. 4 Bio other includes waste, landfill gas, and other. 5 Misc. includes misc. generation, pumped storage, and net imports. 6 Total includes net imports. 7 2019 data is from Electric Power Monthly and is preliminary.[59]

State electric characteristics

Individual states have very diverse electric generation systems, and their new initiatives to expand their generation base are equally diverse. Coupled with consumption disparages, it leads to a mix of "have" and "have not" electric energy states. Using the data from the US DOE Energy Information Administration/Electric Power Annual 2017 files.[60] Data was obtained from the most recent DOE Energy Information Agency (EIA) full year files.[61] Full use of the excellent EIA data browser[62] permits easy access to the plethora of data available.

State electric generation

Top ten states by fuel source

Importing states

The following table, derived from data mined from Electric Power Annual,[63][64] identifies those states which must import electrical energy from neighboring states to meet their consumption needs. Each state's total electric generation for 2018 is compared with the state's consumption, and its share of the system loss and the difference between the generated electric energy and its total consumption (including its share of the system loss) is the amount of energy it imports. For Hawaii, total consumption equals generated energy. For the other states, multiplying their direct consumption by 1.082712997 (4168280574/3849848100), results in the US's supply (including net imports) being equal to its total consumption.

States who must IMPORT Electricity in 2018
Net-importer states in 2018[63][64]
State Consumption Generation State imports
Retail sales (MWh) Total usage (MWh) MWh % 2018 % 2017 Change
CA 255,224,272276,334,636195,265,63881,068,99841.52%37.12%
OH 152,915,167165,563,239126,184,61039,378,62931.21%34.77%
VA 118,166,348127,940,24195,509,12132,431,12033.96%35.53%
MA 53,285,02957,692,39327,172,88230,519,511112.32%79.16%
TN 102,911,183111,423,27581,554,91729,868,35836.62%35.16%
NY 149,929,851162,330,998132,520,50129,810,49722.50%24.40%
MD 62,086,45567,221,81243,809,64823,412,16453.44%91.06%
GA 139,866,074151,434,816129,239,37122,195,44517.17%15.05%
NC 138,287,404149,725,570134,249,49715,476,07311.53%12.40%
FL 238,565,391258,297,849244,252,03514,045,8145.75%7.45%
MN 68,708,38274,391,45861,517,44112,874,01720.93%25.59%
DC 11,357,91012,297,35779,33112,218,02615401.33%17836.59%
WI 70,959,54976,828,82665,936,80310,892,02316.52%16.58%
ID 23,753,50825,718,23218,172,1207,546,11241.53%50.28%
NJ 76,016,76282,304,33675,033,6007,270,7369.69%6.59%
DE 11,773,10012,746,8886,240,6446,506,244104.26%63.12%
CO 56,450,48061,119,66855,386,2795,733,38910.35%11.89%
KY 76,610,63682,947,33178,804,4974,142,8345.26%9.06%
VT 5,530,9485,988,4292,178,9153,809,514174.84%178.29%
MO 82,055,83588,842,91985,095,3843,747,5354.40%0.70%*
ME 12,354,81913,376,723| 11,280,7002,096,02318.58%9.38%
SD 12,856,93813,920,37412,616,3961,303,97810.34%23.72%
NV 37,780,26340,905,18239,640,2411,264,9413.19%5.43%
AK 5,972,4676,466,4686,247,359219,1093.51%4.60%
SUM1,963,418,7712,125,819,0221,727,987,930397,831,092*=Export

Exporting states

The following table, derived from data mined from Electric Power Annual,[63][64] identifies those states which generate more electrical energy than they need to meet their consumption needs. They supply those that need additional energy. Each state's total electric generation for 2018 is compared with the state's consumption, and its share of the system loses and the difference between the generated electric energy and its total consumption (including its share of the system losses) is the amount of energy it exports. For Hawaii, total consumption equals generated energy. For the other states, multiplying their direct consumption by 1.082712997 (4168280574/3849848100) results in the US's supply (including net imports) being equal to its total consumption usage. A state exported energy is determined by subtracting the state's total consumption from its generation.

States which EXPORTED Electricity in 2018
Net-exporters states in 2018[63][64]
State Generation Consumption State exports
Retail sales (MWh) Total usage (MWh) MWh % 2018 % 2017 Change
PA 215,385,830148,976,731161,299,04354,086,78725.11%26.46%
AL 145,057,99490,280,45697,747,82347,310,17132.61%32.30%
IL 188,003,357142,654,808154,454,21533,549,14217.84%17.89%
WV 67,249,02533,646,81336,429,84230,819,18345.83%52.51%
WY 46,112,13616,864,67818,259,60627,852,53060.40%60.56%
AZ 111,925,14478,346,30284,826,55927,098,58524.21%19.40%
ND 42,615,32120,669,50622,379,14320,236,17847.49%46.68%
WA 116,756,72990,005,79197,450,44019,306,28916.54%12.84%
TX 477,352,425424,418,628459,523,56517,828,8603.73%2.48%
OK 86,223,72164,575,31669,916,53416,307,18718.91%9.86%
AR 67,999,35249,602,70853,705,49714,293,85521.02%16.68%
MT 28,212,83114,838,84516,066,21012,146,62143.05%42.73%
SC 99,364,08881,641,13888,393,92110,970,16711.04%7.81%
OR 64,113,56049,325,90453,405,79710,707,76316.70%12.32%
MS 63,473,77150,390,06854,557,9828,915,78914.05%12.01%
CT 39,453,55228,833,92531,218,8658,234,68720.87%10.56%
IA 63,380,56951,210,65555,446,4427,934,12712.52%7.18%
NM 32,673,68224,048,61126,037,7446,635,93820.31%24.75%
KS 51,710,21342,036,97945,513,9846,196,22911.98%13.09%
UT 39,375,42431,242,40833,826,5615,548,86314.09%10.16%
NH 17,087,15611,046,28411,959,9555,127,20130.01%32.07%
NE 36,966,21630,939,49233,498,5903,467,6269.38%5.79%
MI 115,837,095104,869,496113,543,5662,293,5291.98%0.31%
IN 113,459,711104,194,376112,812,605647,1060.57%9.91%*
RI 8,375,2577,583,3398,210,580164,6771.97%6.55%*
LA 102,128,48594,186,072101,976,484152,0010.15%2.55%*
HI 9,796,7739,337,1619,796,77300.00%0.00%
NET IMP 44,455,000
SUM 2,494,544,4171,895,766,4902,052,258,325397,831,092*=Import

Renewable energy

Sources of total United States renewable energy, 2012 (US EIA)

  Biomass (49.1%)
  Hydroelectric (30.3%)
  Wind (15.4%)
  Solar (2.7%)
  Geothermal (2.6%)
The Shepherds Flat Wind Farm is an 845-megawatt wind farm in the US state of Oregon

Renewable energy in the United States accounted for 13.2% of the domestically produced electricity in 2014,[65] and 11.2% of total energy generation.[66] As of 2014, more than 143,000 people work in the solar industry and 43 states deploy net metering, where energy utilities buy back excess energy generated by solar arrays.[67]

Renewable energy reached a major milestone in the first quarter of 2011, when it contributed 11.7% of total US energy production (2.245 quadrillion BTU or 2.369 EJ of energy), surpassing nuclear energy production (2.125 quadrillion BTU or 2.242 EJ).[68] 2011 was the first year since 1997 that renewables exceeded nuclear in total US energy production.[69]

Hydroelectric power is currently the largest producer of renewable energy in the US. It produced around 6.2% of the nation's total electricity in 2010 which was 60.2% of the total renewable energy in the US.[70] The United States is the fourth largest producer of hydroelectricity in the world after China, Canada, and Brazil. The Grand Coulee Dam is the 5th largest hydroelectric power station in the world.

US wind power's installed capacity now exceeds 65,000 MW and supplies 4% of the nation's electric power.[71][72] Texas is firmly established as the leader in wind power development followed by Iowa and California.[73]

The United States has some of the largest solar farms in the world. Solar Star is a 579-megawatt (MWAC) farm near Rosamond, California.[74] The Desert Sunlight Solar Farm is a 550-megawatt solar power plant in Riverside County, California[75] and the Topaz Solar Farm, a 550 MW photovoltaic power plant, is in San Luis Obispo County, California.[76] The solar thermal SEGS group of plants in the Mojave Desert has a total generating capacity of 354 MW.[77]

The Geysers in Northern California is the largest complex of geothermal energy production in the world.

The development of renewable energy and efficient energy use marks "a new era of energy exploration" in the United States, according to President Barack Obama.[78] Studies suggest that if there is enough political will, it is feasible to supply the whole United States with 100% renewable energy by 2050.[79][80]

In 2015, electrical energy usage in the United States was 1.6% more than in 2005 and 1% less than the peak in 2007. Per-capita consumption has decreased about 7% since its peak in 2007 and every year since has shown a decrease in individual consumption. Conservation efforts are helping. At least, for the next decade, coal, natural gas, and nuclear will remain the top three fuels for electric energy generation in the USA. Coal will continuously decrease its contribution, with natural gas increasing its contribution. Nuclear will have some downs (decommissionings) and ups (new online plants) but probably remain about constant. Hydro will maintain. Petroleum will continue to decrease in importance. Wind and solar will continue to grow in importance; their combined generation was 5.29% of US electric generation for 2015 or 5.20% of total US consumption.

Per-capita energy use in the United States

From the beginning of the United States until 1973, total energy (including electrical) use increased by about 3% per year, while population increased an average of 2.2% per year. Per-capita energy use from 1730 to 1870 was about 100 million BTU (110 GJ) per person. In the 20th century this increased to around 300 million BTU or 320 GJ (332 million BTU or 350 GJ per person per year in 1981).[81]

In 2001, Vice President Dick Cheney said the US would need "at least 1,300 new power plants over the next 20 years."[82]

Efficiency improvements could cause energy use to drop considerably.

A concentrating solar array (CSP) with thermal storage has a practical capacity factor of 33%[83] and could provide power 24 hours a day. Prior to 2012, in six southwestern states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) the US Bureau of Land Management (BLM) owned nearly 98 million acres or 400,000 square kilometres (an area larger than the state of Montana) that was open to proposals for solar power installations. To streamline consideration of applications, the BLM produced a Programmatic Environmental Impact Statement (PEIS). By the subsequent Record of Decision in October 2012, the BLM withdrew 78% of its land from possible solar development, leaving 19 million acres (77,000 km2) still open to applications for solar installations, an area nearly as large as South Carolina. Of the area left open to solar proposals, the BLM has identified 285,000 acres (115,000 ha) in highly favorable areas it calls Solar Energy Zones.[84] In Spain, with natural gas backups, CSP has reached a capacity factor of 66%, with 75% being a theoretical maximum.[85]

gollark: BIOS: CC: Tweaks had a BIOS switcher option but nobody used it.Keyboard: there is no reason you should have to individually craft numpad bits and arrow keys and whatnot."Not garbage": highly subjectiveAlso, CC *does* have "too long without yielding" preventing CPU time eating.
gollark: Persistence encourages people to make their stuff too stateful.
gollark: And not having those things really reduces the !!FUN!! potatOS can do.
gollark: Also bytecode.
gollark: CC uses Cobalt, which makes it safe to have `debug` and also access to string metatables.

See also

References

  1. "U.S. Energy Information Administration".
  2. See #Fossil-fuel equivalency - these figures are actually closer to 2.8% each.
  3. US Dept. of Energy, "Annual Energy Report" (2010), Energy Flow diagram
  4. Barr, Robert. "China surpasses US as top energy consumer". Associated Press. Retrieved 16 June 2012.
  5. World Per Capita Total Primary Energy Consumption,1980-2005 Archived October 13, 2006, at the Wayback Machine (MS Excel format)
  6. World Resources Institute "Energy Consumption: Consumption per capita Archived December 12, 2004, at the Wayback Machine" (2001). Nations with higher per-capita consumption are: Qatar, Iceland, United Arab Emirates, Bahrain, Luxembourg and Canada. Except for Canada, these are small countries with a prominent energy-intensive industry such as oil refining or steelmaking.
  7. Ristinen, Robert, A. Energy and the Environment. Malloy, 2006. Print.
  8. Rocks, Lawrence; Runyon, Richard P. (1972). The Energy Crisis. Retrieved November 6, 2016.
  9. Rocks, Lawrence; Runyon, Richard P. (1972). The Energy Crisis. Retrieved November 6, 2016.
  10. "Annual Coal Report" (PDF). Eia.gov. Retrieved 14 October 2017.
  11. "World Development Indicators - Google Public Data Explorer". Google.com. Retrieved 14 October 2017.
  12. US Dept. of Energy, "Energy in the United States: 1635-2000"
  13. "Who We Are". American Energy Innovation Council. Retrieved 2015-01-06.
  14. Broder, John M. (2010-06-09). "A Call to Triple U.S. Spending on Energy Research". The New York Times.
  15. IEA Key World Energy Statistics Statistics 2015, 2014 (2012R as in November 2015 + 2012 as in March 2014 is comparable to previous years statistical calculation criteria, 2013, 2012, 2011, 2010, 2009 Archived 2013-10-07 at the Wayback Machine, 2006 Archived 2009-10-12 at the Wayback Machine IEA October, crude oil p.11, coal p. 13 gas p. 15
  16. Energy in Sweden 2010 Archived October 16, 2013, at the Wayback Machine, Facts and figures, The Swedish Energy Agency, Table 8 Losses in nuclear power stations Table 9 Nuclear power brutto
  17. US Dept. of Energy, "U.S. primary energy consumption by source and sector, 2017" (2017)
  18. IEA Key World Energy Statistics 2011 Archived 2011-12-16 at the Wayback Machine October 2011
  19. "World Energy Consumption: Map, Figures by Region - Enerdata". Yearbook.enerdata.net. Retrieved 2 February 2020.
  20. Energy Information Administration (August 2005). "2004 U. S. Energy Consumption by Energy Source". Eia.doe.gov. Retrieved 14 October 2017.
  21. "World Consumption of Primary Energy by Energy Type and Selected Country Groups, 1980-2004". Energy Information Administration. July 31, 2006. Archived from the original (XLS) on 2006-11-09. Retrieved 2007-01-20.
  22. "What role have natural resources played in the politics and economy of the Middle East?". Global Connections. Public Broadcasting System (PBS). Retrieved 22 June 2014.
  23. Hamilton, James. "Historical Oil Shocks" (PDF). Econweb. University of California, San Diego. Retrieved 22 June 2014.
  24. Cleveland, Cutler J.; Costanza, Robert; Hall, Charles A. S.; Kaufmann, Robert. "Energy and the U.S. Economy: A Biophysical Perspective" (PDF). oilcrisis. Science. Retrieved 22 June 2014.
  25. Van Doren, Peter. "A Brief History of Energy Regulations" (PDF). downsizinggovernment. CATO Institute. Retrieved 22 June 2014.
  26. US Energy Information Administration,Overview, accessed 13 February 2017.
  27. US EIA, Natural gas wellhead value and marketed production, accessed 25 April 2015.
  28. "Global natural gas prices vary considerably - Today in Energy - U.S. Energy Information Administration (EIA)". www.eia.gov.
  29. Inventory of Assessed Federal Coal Resources and Restrictions to Their Development (PDF) (Report). U.S. Departments of Energy, Interior and Agriculture. August 2007. p. 94. Retrieved March 28, 2017.
  30. "Archived copy". Archived from the original on 2008-09-11. Retrieved 2018-06-18.CS1 maint: archived copy as title (link)
  31. U.S. coal exports fall on lower European demand, increased global supply, US Energy Information Administration, 3 Oct. 2014.
  32. Speight, James G. (2012-09-04). The Chemistry and Technology of Coal, Third Edition. CRC Press. p. 13. ISBN 9781439836460.
  33. Trevor Houser, Jason Bordoff and Peter Marsters (April 25, 2017). "Can Coal Make a Comeback?". energypolicy.columbia.edu. Center on Global Energy Policy, School of International and Public Affairs, Columbia University. Retrieved 15 May 2017. Increased competition from cheap natural gas is responsible for 49% of the decline in domestic US coal consumption. Lower-than-expected demand is responsible for 26 percent, and the growth in renewable energy is responsible for 18 percent.
  34. US Dept. of Energy, "Manufacturing Trend Data" (2002), Table 2b
  35. US Dept. of Energy, "Annual Energy Outlook" (February 2006), Table A2
  36. US Dept. of Energy, "Buildings Energy Data Book Archived 2006-09-23 at the Wayback Machine" (September 2006), sec. 1.2.3
  37. "State Energy Price and Expenditure Estimates: 1970 Through 2017" (PDF). Energy Information Administration. 2019. p. 5.
  38. U.S. Energy Information Administration (2009), Consumption Estimates, archived from the original on 2012-02-17, retrieved 2011-10-03
  39. New York City Mayor's Office of Sustainability (2007). "New York City's Climate Change Challenges through 2030" (PDF). Archived from the original (PDF) on 2007-07-12. Retrieved 2007-02-28.
  40. Danielle Kurtzleben. "The 10 States that Use the Least Energy Per Capita". US News & World Report.
  41. Danielle Kurtzleben. "The 10 States that Use the Most Energy Per Capita". US News & World Report.
  42. EPA, OA, OP, OSC, US. "Smart Growth - US EPA" (PDF). US EPA. Retrieved 14 October 2017.CS1 maint: multiple names: authors list (link)
  43. "United States: Energy". CIA World Factbook 2009. Retrieved 15 June 2012.
  44. "Electric Power Annual 2018 - U.S. Energy Information Administration". Eia.gov. Retrieved 11 June 2020.
  45. "Electric Power Annual" retrieved 2020-6-14
  46. "Electric Power Annual 2018 " retrieved 2020-6-11
  47. "U.S. electricity flow, 2019" (PDF). EIA. Retrieved 17 April 2020.
  48. "Electric Power Monthly". Retrieved 22 March 2020.
  49. Electric Power Monthly Eia.gov, retrieved 2020-06-18
  50. "Electric Power Annual" retrieved 2020-6-14
  51. "Demographics"2018 Population retrieved 2020-6-11
  52. "EPA Generating Capacity" Eia.gov, retrieved 2020-6-11
  53. "EPA Damballa's Coils " Eia.gov, retrieved 2020-6-11
  54. "EPA Import/Export " Eia.gov, retrieved 2020-6-14
  55. "Electric Power Monthly". US Energy Information Administration. Retrieved 2020-06-11.
  56. "EPA Import/Export"Import/Export Eia.gov, retrieved 2019-2-20
  57. "Existing Capacity" Existing Capacity Eia.gov, retrieved 2020-6-11
  58. "Electric Power Monthly - U.S. Energy Information Administration". Eia.gov. Retrieved 11 June 2019.
  59. "Electricity - U.S. Energy Information Administration (EIA)". Eia.gov. Retrieved 22 February 2019.
  60. "Electric Power detailed State data". Eia.gov. Retrieved 22 February 2019.
  61. "Electric Power Data Browser" 2019-3-15
  62. "State Historical Tables for 2018" (XLS). Eia.gov. Retrieved 14 June 2020.
  63. "State Historical Tables for 2018" (XLS). Eia.gov. Retrieved 14 June 2020.
  64. US Energy Information Administration, Electric Power Monthly, January 2013. Eia.gov
  65. US Energy Information Administration,Energy monthly, Eia.gov, accessed 6 Nov. 2013.
  66. Editorial Board (26 April 2014). "The Koch Attack on Solar Energy". The New York Times.
  67. Ron Pernick and Clint Wilder (2012). "Clean Tech Nation" (PDF). p. 5.
  68. US Energy Information Administration, Total Energy. Eia.gov
  69. "Direct Federal Financial Interventions and Subsidies in Energy in Fiscal Year 2013". Energy Information Administration. Retrieved 10 November 2015.
  70. US Energy Information Administration, , September 2013. Eia.gov
  71. "AWEA 4th quarter 2012 Public Market Report" (PDF). American Wind Energy Association (AWEA). January 2013. Archived from the original (PDF) on May 18, 2013. Retrieved January 30, 2013.
  72. American Wind Energy Association, Annual U.S. wind power rankings track industry's rapid growth Archived 2010-06-19 at the Wayback Machine
  73. "Solar Star, Largest PV Power Plant in the World, Now Operational". GreenTechMedia.com. 24 June 2015.
  74. "DOE Closes on Four Major Solar Projects". Renewable Energy World. 30 September 2011.
  75. Steve Leone (7 December 2011). "Billionaire Buffett Bets on Solar Energy". Renewable Energy World.
  76. SEGS I, II, III, IV, V, VI, VII, VIII & IX Archived 2014-08-05 at the Wayback Machine
  77. "Archived copy". Archived from the original on 2009-04-29. Retrieved 2009-04-29.CS1 maint: archived copy as title (link)
  78. M.Z. Jacobson et al. 2015: 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy and Environmental Science Issue 8, p. 2093-2117. doi:10.1039/C5EE01283J.
  79. M.Z. Jacobson et al. 2015: Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proceedings of the National Academy of Sciences Issue 112, Number 49, p. 15060–15065. doi:10.1073/pnas.1510028112.
  80. "Per capita energy consumption has declined in the United States". Knowledge Problem.
  81. "Mixing Oil and (Clean) Water". Newsweek. 7 May 2001. p. 6 of print edition. Retrieved 3 April 2018.
  82. "Concentrating Solar Power Projects: Ivanpah Solar Electric Generating System : Concentrating Solar Power". Nrel.gov. Retrieved 14 October 2017.
  83. "Solar Energy Program". blmsolar.anl.gov. Retrieved 14 October 2017.
  84. "Torresol Energy - Gemasolar thermosolar plant". Torresolenergy.com. Retrieved 14 October 2017.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.