Timeline of volcanism on Earth

This timeline of volcanism on Earth includes a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission during the Quaternary period (from 2.58 Mya to the present). Other volcanic eruptions are also listed.

1980 eruption of Mount St. Helens1912 eruption of NovaruptaYellowstone Caldera1902 eruption of Santa María1280 eruption of Quilotoa1600 eruption of Huaynaputina2010 eruptions of EyjafjallajökullYellowstone Caldera1783 eruption of Laki1477 eruption of BárðarbungaVolcanic activity at SantoriniToba catastrophe theoryKuril IslandsKikai Caldera1991 eruption of Mount PinatuboLong Island (Papua New Guinea)1815 eruption of Mount Tambora1883 eruption of Krakatoa2010 eruptions of Mount MerapiBilly Mitchell (volcano)Taupo VolcanoTaupo VolcanoTaupo VolcanoCrater Lake
Clickable imagemap of notable volcanic eruptions. The apparent volume of each bubble is linearly proportional to the volume of tephra ejected, colour-coded by time of eruption as in the legend. Pink lines denote convergent boundaries, blue lines denote divergent boundaries and yellow spots denote hotspots.

Some eruptions cooled the global climate—inducing a volcanic winter—depending on the amount of sulfur dioxide emitted[1] and the magnitude of the eruption.[2] Before the present Holocene epoch, the criteria are less strict because of scarce data availability, partly since later eruptions have destroyed the evidence. Only some eruptions before the Neogene period (from 23 Mya to 2.58 Mya) are listed. Known large eruptions after the Paleogene period (from 66 Mya to 23 Mya) are listed, especially those relating to the Yellowstone hotspot, the Santorini caldera, and the Taupo Volcanic Zone.

Active volcanoes such as Stromboli, Mount Etna and Kīlauea do not appear on this list, but some back-arc basin volcanoes that generated calderas do appear. Some dangerous volcanoes in "populated areas" appear many times: Santorini six times, and Yellowstone hotspot 21 times. The Bismarck volcanic arc, New Britain, and the Taupo Volcanic Zone, New Zealand, appear often too.

In addition to the events listed below, there are many examples of eruptions in the Holocene on the Kamchatka Peninsula,[3] which are described in a supplemental table by Peter Ward.[4]

Large Quaternary eruptions

The Holocene epoch begins 11,700 years BP[5] (10,000 14C years ago).

1000-2000 AD

  • Pinatubo, island of Luzon, Philippines; 1991, June 15; VEI 6; 6 to 16 km3 (1.4 to 3.8 cu mi) of tephra;[6] an estimated 20,000,000 tonnes (22,000,000 short tons) of SO
    2
    were emitted[2]
  • Novarupta, Alaska Peninsula; 1912, June 6; VEI 6; 13 to 15 km3 (3.1 to 3.6 cu mi) of lava[7][8][9]
  • Santa Maria, Guatemala; 1902, October 24; VEI 6; 20 km3 (4.8 cu mi) of tephra[10]
  • Krakatoa, Indonesia; 1883, August 26–27; VEI 6; 21 km3 (5.0 cu mi) of tephra[11]
  • Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; 150 km3 (36 cu mi) of tephra;[6] an estimated 200,000,000 t (220,000,000 short tons) of SO
    2
    were emitted, produced the "Year Without a Summer"[12]
  • 1808 mystery eruption, VEI 6–7; discovered from ice cores in the 1980s.[13][14][15]
  • Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 6; 14 km3 (3.4 cu mi) of lava, an estimated 120,000,000 t (130,000,000 short tons) of SO
    2
    were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.[16]
  • Long Island (Papua New Guinea), Northeast of New Guinea; 1660 ±20; VEI 6; 30 km3 (7.2 cu mi) of tephra[6]
  • Kolumbo, Santorini, Greece; 1650, September 27; VEI 5; 2 km3 (0.5 cu mi) of tephra[17]
  • Huaynaputina, Peru; 1600, February 19; VEI 6; 30 km3 (7.2 cu mi) of tephra[18]
  • Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; 14 km3 (3.4 cu mi) of tephra[6]
  • Bárðarbunga, Northeastern Iceland; 1477; VEI 6; 10 cubic kilometres (2.4 cu mi) of tephra[6]
  • 1465 mystery eruption "the location of this eruption is uncertain, as it has only been identified from distant ice core records and atmospheric events around the time of King Alfonso II of Naples's wedding; it is believed to have been VEI 7 and possibly even larger than Mount Tambora's in 1815.[19][20]
  • 1452–53 New Hebrides arc, Vanuatu; the location of this eruption in the South Pacific is uncertain, as it has been identified from distant ice core records; the only pyroclastic flows are found at Kuwae; 36 to 96 km3 (8.6 to 23.0 cu mi) of tephra; 175,000,000–700,000,000 t (193,000,000–772,000,000 short tons) of sulfuric acid[21][22][23]
  • 1280(?) in Quilotoa, Ecuador; VEI 6; 21 km3 (5.0 cu mi) of tephra[6]
  • 1257 Samalas eruption, Rinjani volcanic complex, Lombok Island, Indonesia; 40 km3 (dense-rock equivalent) of tephra, Arctic and Antarctic Ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.[24][25]

Overview of Common Era

This is a sortable summary of 27 major eruptions in the last 2000 years with VEI ≥6, implying an average of about 1.3 per century. The count does not include the notable VEI 5 eruptions of Mount St. Helens and Mount Vesuvius. Date uncertainties, tephra volumes, and references are also not included.

Caldera/ Eruption nameVolcanic arc/ belt
or Subregion or Hotspot
VEIDateKnown/proposed consequences
Mount PinatuboLuzon Volcanic Arc61991, Jun 15Global temperature fell by 0.4 °C
NovaruptaAleutian Range61912, Jun 6
Santa MaríaCentral America Volcanic Arc61902, Oct 24
KrakatoaSunda Arc61883, Aug 26–27At least 30,000 dead
Mount TamboraLesser Sunda Islands71815, Apr 10Year Without a Summer (1816)
1808 mystery eruptionSouthwestern Pacific Ocean61808, DecA sulfate spike in ice cores
Grímsvötn and LakiIceland61783–85Mist Hardships, French Revolution
Long Island (Papua New Guinea)Bismarck Volcanic Arc61660
HuaynaputinaAndes, Central Volcanic Zone61600, Feb 19Russian famine of 1601–1603
Billy MitchellBougainville & Solomon Is.61580
BárðarbungaIceland61477
10 October 1465 mystery eruptionunknown71465Possibly larger than Mount Tambora's
KuwaeNew Hebrides Arc61452–532nd pulse[26] of Little Ice Age?
QuilotoaAndes, Northern Volcanic Zone61280
Samalas (Mount Rinjani)Lombok, Lesser Sunda Islands712571257 Samalas eruption, 1st pulse[27][28] of Little Ice Age? (c.1250)
Baekdu Mountain/Tianchi eruptionChina/ North Korea border7946, Nov-947Limited regional climatic effects.[29]
Katla/Eldgjá eruptionIceland6934–940
CeborucoTrans-Mexican Volcanic Belt6930
DakatauaBismarck Volcanic Arc6800
PagoBismarck Volcanic Arc6710
Mount Churchilleastern Alaska, USA6700
Rabaul CalderaBismarck Volcanic Arc6540 (est.)Extreme weather events of 535–536
IlopangoCentral America Volcanic Arc6450
KsudachKamchatka Peninsula6240
Taupo Caldera/Hatepe eruptionTaupo Volcano7180 or 230Affected skies over Rome and China
Mount Vesuvius/Pompeii eruptionItaly579Destruction of Pompeii and Herculaneum
Mount Churchilleastern Alaska, USA660
AmbrymNew Hebrides Arc650
ApoyequeCentral America Volcanic Arc650 BC (±100)

Note: Caldera names tend to change over time. For example, Okataina Caldera, Haroharo Caldera, Haroharo volcanic complex, Tarawera volcanic complex had the same magma source in the Taupo Volcanic Zone. Yellowstone Caldera, Henry's Fork Caldera, Island Park Caldera, Heise Volcanic Field had all Yellowstone hotspot as magma source.

Earlier Quaternary eruptions

2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

  • Eifel hotspot, Laacher See, Vulkan Eifel, Germany; 12.9 ka; VEI 6; 6 cubic kilometers (1.4 cu mi) of tephra.[30][31][32][33]
  • Emmons Lake Caldera (size: 11 x 18 km), Aleutian Range, 17 ka ±5; more than 50 km3 (12 cu mi) of tephra.[4]
  • Lake Barrine, Atherton Tableland, North Queensland, Australia; was formed over 17 ka.
  • Menengai, East African Rift, Kenya; 29 ka[6]
  • Morne Diablotins, Commonwealth of Dominica; VEI 6; 30 ka (Grand Savanne Ignimbrite).[34]
  • Kurile Lake, Kamchatka Peninsula, Russia; Golygin eruption; about 41.5 ka; VEI 7[6]
  • Maninjau Caldera (size: 20 x 8 km), West Sumatra; VEI 7; around 52 ka; 220 to 250 cubic kilometers (52.8 to 60.0 cu mi) of tephra.[35]
  • Lake Toba (size: 100 x 30 km), Sumatra, Indonesia; VEI 8; 73 ka ±4; 2,500 to 3,000 cubic kilometers (599.8 to 719.7 cu mi) of tephra; probably six gigatons of sulfur dioxide were emitted (Youngest Toba Tuff).[2][36][37][38][39]
  • Atitlán Caldera (size: 17 x 20 km), Guatemalan Highlands; Los Chocoyos eruption; formed in an eruption 84 ka; VEI 7; 300 km3 (72 cu mi) of tephra.[40]
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 90 ka; last eruption was more than 600 cubic kilometers (144 cu mi) of tephra.[4][41]
  • Sierra la Primavera volcanic complex (size: 11 km wide), Guadalajara, Jalisco, Mexico; 95 ka; 20 cubic kilometers (5 cu mi) of Tala Tuff.[4][42]
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 120 ka; 80 km3 (19 cu mi) of tephra.[4]
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; 140 ka; 80 km3 (19 cu mi) of tephra.[4]
  • Puy de Sancy, Massif Central, central France; it is part of an ancient stratovolcano which has been inactive for about 220,000 years.
  • Emmons Lake Caldera (size: 11 x 18 km), Aleutian Range, 233 ka; more than 50 km3 (12 cu mi) of tephra.[4]
  • Mount Aso (size: 24 km wide), island of Kyūshū, Japan; caldera formed as a result of four huge caldera eruptions; 270 ka; 80 cubic kilometers (19 cu mi) of tephra.[4]
  • Uzon-Geyzernaya calderas (size: 9 x 18 km), Kamchatka Peninsula, Russia; 325–175 ka[43] 20 km3 (4.8 cu mi) of ignimbrite deposits.[44]
  • Diamante Caldera–Maipo volcano complex (size: 20 x 16 km), Argentina-Chile; 450 ka; 450 cubic kilometers (108 cu mi) of tephra.[4][45]
  • Yellowstone hotspot; Yellowstone Caldera (size: 45 x 85 km); 640 ka; VEI 8; more than 1,000 cubic kilometers (240 cu mi) of tephra (Lava Creek Tuff)[6]
  • Three Sisters (Oregon), USA; Tumalo volcanic center; with eruptions from 600–700 to 170 ka years ago
  • Uinkaret volcanic field, Arizona, USA; the Colorado River was dammed by lava flows multiple times from 725 to 100 ka.[46]
  • Mono County, California, USA; Long Valley Caldera; 758.9 ka ±1.8; VEI 7; 600 cubic kilometers (144 cu mi) of Bishop Tuff.[4][47]
  • Valles Caldera, New Mexico, USA; around 1.15 Ma; VEI 7; around 600 cubic kilometers (144 cu mi) of the Tshirege formation, Upper Bandelier eruption.[4][48][49]
  • Sutter Buttes, Central Valley of California, USA; were formed over 1.5 Ma by a now-extinct volcano.
  • Ebisutoge-Fukuda tephras, Japan; 1.75 Ma; 380 to 490 cubic kilometers (91.2 to 117.6 cu mi) of tephra.[4]
  • Yellowstone hotspot; Island Park Caldera (size: 100 x 50 km); 2.1 Ma; VEI 8; 2,450 cubic kilometers (588 cu mi) of Huckleberry Ridge Tuff.[4][6]
  • Cerro Galán (size: 32 km wide), Catamarca Province, northwestern Argentina; 2.2 Ma; VEI 8; 1,050 cubic kilometers (252 cu mi) of Cerro Galán Ignimbrite.[50]

Large Neogene eruptions

Pliocene eruptions

Approximately 5.332 million years BP, the Pliocene epoch begins. Most eruptions before the Quaternary period have an unknown VEI.

Santa Rosa-Calico
Virgin Valley
McDermitt
Black Mountain
Silent Canyon
Timber Mountain
Stonewall
Long Valley
Lunar Crater
Nevada/ California:
Volcanism locations.
Cochetopa
La Garita
Lake City
Platoro
Dotsero
Colorado volcanism. Links: La Garita, Cochetopa and North Pass (North Pass), Lake City, and Dotsero.
Valles
Socorro
Potrillo
Zuni-Bandera
Carizzozo
New Mexico volcanism. Links: Valles, Socorro, Potrillo, Carrizozo, and Zuni-Bandera.
  • Boring Lava Field, Boring, Oregon, USA; the zone became active at least 2.7 Ma, and has been extinct for about 300,000 years.[51]
  • Norfolk Island, Australia; remnant of a basaltic volcano active around 2.3 to 3 Ma.[52]
  • Pastos Grandes Caldera (size: 40 x 50 km), Altiplano-Puna volcanic complex, Bolivia; 2.9 Ma; VEI 7; more than 820 cubic kilometers (197 cu mi) of Pastos Grandes Ignimbrite.[53]
  • Little Barrier Island, northeastern coast of New Zealand's North Island; it erupted from 1 million to 3 Ma.[54]
  • Mount Kenya; a stratovolcano created approximately 3 Ma after the opening of the East African rift.[55]
  • Pacana Caldera (size: 60 x 35 km), Altiplano-Puna Volcanic Complex, northern Chile; 4 Ma; VEI 8; 2,500 cubic kilometers (600 cu mi) of Atana Ignimbrite.[56]
  • Frailes Plateau, Bolivia; 4 Ma; 620 cubic kilometers (149 cu mi) of Frailes Ignimbrite E.[4][57]
  • Cerro Galán (size: 32 km wide), Catamarca Province, northwestern Argentina; 4.2 Ma; 510 cubic kilometers (122 cu mi) of Real Grande and Cueva Negra tephra.[4]
  • Yellowstone hotspot, Heise volcanic field, Idaho; Kilgore Caldera (size: 80 x 60 km); VEI 8; 1,800 cubic kilometers (432 cu mi) of Kilgore Tuff; 4.45 Ma ±0.05.[4][58]
  • Khari Khari Caldera, Frailes Plateau, Bolivia; 5 Ma; 470 cubic kilometers (113 cu mi) of tephra.[4]

Miocene eruptions

The final eruptions in the creation of Banks Peninsula in New Zealand occurred about 9 million years ago.
A major eruption of Gran Canaria took place around 14 million years ago.

Approximately 23.03 million years BP, the Neogene period and Miocene epoch begin.

  • Cerro Guacha, Bolivia; 5.6–5.8 Ma (Guacha ignimbrite).[59]
  • Lord Howe Island, Australia; Mount Lidgbird and Mount Gower are both made of basalt rock, remnants of lava flows that once filled a large volcanic caldera 6.4 Ma.[60]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.51 Ma ±0.13 (Conant Creek Tuff).[58]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.6 Ma; 500 cubic kilometers (120 cu mi) of Blue Creek Tuff.[4]
  • Cerro Panizos (size: 18 km wide), Altiplano-Puna Volcanic Complex, Bolivia; 6.1 Ma; 652 cubic kilometers (156 cu mi) of Panizos Ignimbrite.[4][61]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 6.27 Ma ±0.04 (Walcott Tuff).[58]
  • Yellowstone hotspot, Heise volcanic field, Idaho; Blacktail Caldera (size: 100 x 60 km), Idaho; 6.62 Ma ±0.03; 1,500 cubic kilometers (360 cu mi) of Blacktail Tuff.[4][58]
  • Pastos Grandes Caldera (size: 40 x 50 km), Altiplano-Puna Volcanic Complex, Bolivia; 8.3 Ma; 652 cubic kilometers (156 cu mi) of Sifon Ignimbrite.[4]
  • Manus Island, Admiralty Islands, northern Papua New Guinea; 8–10 Ma
  • Banks Peninsula, New Zealand; Akaroa erupted 9 Ma, Lyttelton erupted 12 Ma.[62]
  • Mascarene Islands were formed in a series of undersea volcanic eruptions 8–10 Ma, as the African plate drifted over the Réunion hotspot.
  • Yellowstone hotspot, Twin Fall volcanic field, Idaho; 8.6 to 10 Ma.[63]
  • Yellowstone hotspot, Picabo volcanic field, Idaho; 10.21 Ma ± 0.03 (Arbon Valley Tuff).[58]
  • Mount Cargill, New Zealand; the last eruptive phase ended some 10 Ma. The center of the caldera is about Port Chalmers, the main port of the city of Dunedin.[64][65][66]
  • Yellowstone hotspot, Idaho; Bruneau-Jarbidge volcanic field; 10.0 to 12.5 Ma (Ashfall Fossil Beds eruption).[63]
  • Anahim hotspot, British Columbia, Canada; has generated the Anahim Volcanic Belt over the last 13 million years.
  • Yellowstone hotspot, Owyhee-Humboldt volcanic field, Nevada/ Oregon; around 12.8 to 13.9 Ma.[63][67]
  • Tejeda Caldera, Gran Canaria, Spain; 13.9 Ma; the 80 km3 eruption produced a composite ignimbrite (P1) of rhyolite, trachyte and basaltic materials, with a thickness of 30 metres at 10 km from the caldera center[68]
  • Gran Canaria shield basalt eruption, Spain; 14.5 to 14 Ma; 1,000 km3 of tholeiitic to alkali basalts
  • Campi Flegrei, Naples, Italy; 14.9 Ma; 79 cubic kilometers (19 cu mi) of Neapolitan Yellow Tuff.[4]
  • Huaylillas Ignimbrite, Bolivia, southern Peru, northern Chile; 15 Ma ±1; 1,100 cubic kilometers (264 cu mi) of tephra.[4]
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Whitehorse Caldera (size: 15 km wide), Oregon; 15 Ma; 40 cubic kilometers (10 cu mi) of Whitehorse Creek Tuff.[4][69]
  • Yellowstone hotspot (?), Lake Owyhee volcanic field; 15.0 to 15.5 Ma.[70]
  • Yellowstone hotspot, McDermitt volcanic field (South), Jordan Meadow Caldera, (size: 10–15 km wide), Nevada/ Oregon; 15.6 Ma; 350 cubic kilometers (84 cu mi) Longridge Tuff member 2-3.[4][63][69][71]
  • Yellowstone hotspot, McDermitt volcanic field (South), Longridge Caldera, (size: 33 km wide), Nevada/ Oregon; 15.6 Ma; 400 cubic kilometers (96 cu mi) Longridge Tuff member 5.[4][63][69][71]
  • Yellowstone hotspot, McDermitt volcanic field (South), Calavera Caldera, (size: 17 km wide), Nevada/ Oregon; 15.7 Ma; 300 cubic kilometers (72 cu mi) of Double H Tuff.[4][63][69][71]
  • Yellowstone hotspot, McDermitt volcanic field (South), Hoppin Peaks Caldera, 16 Ma; Hoppin Peaks Tuff.[72]
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Pueblo Caldera (size: 20 x 10 km), Oregon; 15.8 Ma; 40 cubic kilometers (10 cu mi) of Trout Creek Mountains Tuff.[4][69][72]
  • Yellowstone hotspot, McDermitt volcanic field (South), Washburn Caldera, (size: 30 x 25 km wide), Nevada/ Oregon; 16.548 Ma; 250 cubic kilometers (60 cu mi) of Oregon Canyon Tuff.[4][69][71]
  • Yellowstone hotspot (?), Northwest Nevada volcanic field (NWNV), Virgin Valley, High Rock, Hog Ranch, and unnamed calderas; West of Pine Forest Range, Nevada; 15.5 to 16.5 Ma.[73]
  • Yellowstone hotspot, Steens and Columbia River flood basalts, Pueblo, Steens, and Malheur Gorge-region, Pueblo Mountains, Steens Mountain, Washington, Oregon, and Idaho, USA; most vigorous eruptions were from 14–17 Ma; 180,000 cubic kilometers (43,184 cu mi) of lava.[4][74][75][76][77][78][79][80]
  • Mount Lindesay (New South Wales), Australia; is part of the remnants of the Nandewar extinct volcano that ceased activity about 17 Ma after 4 million years of activity.
  • Oxaya Ignimbrites, northern Chile (around 18°S); 19 Ma; 3,000 cubic kilometers (720 cu mi) of tephra.[4]
  • Pemberton Volcanic Belt was erupting about 21 to 22 Ma.[81]

Volcanism before the Neogene

Distribution of selected hotspots. The numbers in the figure are related to the listed hotspots on Hotspot (geology).

Notes

Volcanic Explosivity Index (VEI)

VEI and ejecta volume correlation
VEITephra Volume
(cubic kilometers)
Example
0EffusiveMasaya Volcano, Nicaragua, 1570
1>0.00001Poás Volcano, Costa Rica, 1991
2>0.001Mount Ruapehu, New Zealand, 1971
3>0.01Nevado del Ruiz, Colombia, 1985
4>0.1Eyjafjallajökull, Iceland, 2010
5>1Mount St. Helens, United States, 1980
6>10Mount Pinatubo, Philippines, 1991
7>100Mount Tambora, Indonesia, 1815
8>1000Yellowstone Caldera, United States, Pleistocene

       

Volcanic dimming

The global dimming through volcanism (ash aerosol and sulfur dioxide) is quite independent of the eruption VEI.[99][100][101] When sulfur dioxide (boiling point at standard state: -10 °C) reacts with water vapor, it creates sulfate ions (the precursors to sulfuric acid), which are very reflective; ash aerosol on the other hand absorbs Ultraviolet.[102] Global cooling through volcanism is the sum of the influence of the global dimming and the influence of the high albedo of the deposited ash layer.[103] The lower snow line and its higher albedo might prolong this cooling period.[104] Bipolar comparison showed six sulfate events: Tambora (1815), Cosigüina (1835), Krakatoa (1883), Agung (1963), and El Chichón (1982), and the 1808 mystery eruption.[105] And the atmospheric transmission of direct solar radiation data from the Mauna Loa Observatory (MLO), Hawaii (19°32'N) detected only five eruptions:[106]

 

But very large sulfur dioxide emissions overdrive the oxidizing capacity of the atmosphere. Carbon monoxide's and methane's concentration goes up (greenhouse gases), global temperature goes up, ocean's temperature goes up, and ocean's carbon dioxide solubility goes down.[1]

gollark: Oh, it has keyboard shortcuts too.
gollark: Well, currently, you can:- create pages- view pages- edit pages- search within pages- use Markdown- see backlinks
gollark: I already do, that's not helpful.
gollark: Hmm, I don't actually know what to do next on Minoteaur™.
gollark: It turns out you actually just need to mess with some JSON files.

See also

References

  1. Ward, Peter L. (2 April 2009). "Sulfur Dioxide Initiates Global Climate Change in Four Ways". Thin Solid Films. 517 (11): 3188–3203. Bibcode:2009TSF...517.3188W. doi:10.1016/j.tsf.2009.01.005.
  2. Robock, A.; C.M. Ammann; L. Oman; D. Shindell; S. Levis; G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?". Journal of Geophysical Research. 114 (D10): D10107. Bibcode:2009JGRD..11410107R. doi:10.1029/2008JD011652.
  3. "Holocene Kamchatka volcanoes". Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences. Retrieved 2018-04-30.
  4. "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces" (PDF). Teton Tectonics. Archived from the original (PDF) on 2010-01-20. Retrieved 2010-03-16.
  5. "International Stratigraphic Chart" (PDF). International Commission on Stratigraphy. Archived from the original (PDF) on 2009-12-29. Retrieved 2009-12-23.
  6. http://www.volcano.si.edu/world/largeeruptions.cfm Large Holocene Eruptions
  7. Brantley, Steven R. (1999-01-04). Volcanoes of the United States. Online Version 1.1. United States Geological Survey. p. 30. ISBN 978-0-16-045054-9. OCLC 156941033. Retrieved 2008-09-12.
  8. Judy Fierstein; Wes Hildreth; James W. Hendley II; Peter H. Stauffer (1998). "Can Another Great Volcanic Eruption Happen in Alaska? - U.S. Geological Survey Fact Sheet 075-98". Version 1.0. United States Geological Survey. Retrieved 2008-09-10.
  9. Fierstein, Judy; Wes Hildreth (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology. Springer. 54 (8): 646–684. Bibcode:1992BVol...54..646F. doi:10.1007/BF00430778.
  10. "Santa Maria". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-19.
  11. Hopkinson, Deborah (January 2004). "The Volcano That Shook the world: Krakatoa 1883". Storyworks. Vol. 11 no. 4. New York. p. 8 via Scholastic.com.
  12. "Tambora". www.earlham.edu.
  13. University of Bristol (19 September 2014). "First eyewitness accounts of mystery volcanic eruption" (Press release). Archived from the original on 10 December 2014.
  14. "Undocumented volcano contributed to extremely cold decade from 1810–1819".
  15. Guevara-Murua, A.; Williams, C. A.; Hendy, E. J.; Rust, A. C.; Cashman, K. V. (2014). "Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the "Unknown" ~1809 eruption?" (PDF). Climate of the Past Discussions. 10 (2): 1901–1932. Bibcode:2014CliPD..10.1901G. doi:10.5194/cpd-10-1901-2014. ISSN 1814-9359.
  16. "BBC Two - Timewatch". BBC.
  17. Sigurdsson Haraldur; Carey S.; Mandeville C. (1990). "Assessment of mass, dynamics and environmental effects of the Minoan eruption of the Santorini volcano". Thera and the Aegean World III: Proceedings of the Third Thera Conference. II: 100–12.
  18. "Huaynaputina". Global Volcanism Program. Smithsonian Institution. Retrieved 2008-12-29.
  19. http://www.bbc.com/future/story/20170630-the-massive-volcano-that-scientists-cant-find
  20. https://www.academia.edu/14139518/The_day_the_sun_turned_blue._A_volcanic_eruption_in_the_early_1460s_and_its_putative_climatic_impact_a_globally_perceived_volcanic_disaster_in_the_Late_Middle_Ages
  21. Nemeth, Karoly; Shane J. Cronin; James D.L. White (2007). "Kuwae caldera and climate confusion". The Open Geology Journal. 1 (5): 7–11. Bibcode:2007OGJ.....1....7N. doi:10.2174/1874262900701010007.
  22. Gao, Chaochao; A. Robock; S. Self; J. B. Witter; J. P. Steffenson; H. B. Clausen; M.-L. Siggaard-Andersen; S. Johnsen; P. A. Mayewski; C. Ammann (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research. 111 (D12): D12107. Bibcode:2006JGRD..11112107G. doi:10.1029/2005JD006710. Retrieved 2010-03-19.
  23. Witter, J.B.; Self S. (January 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Volcanology. 69 (3): 301–318. Bibcode:2007BVol...69..301W. doi:10.1007/s00445-006-0075-4.
  24. Lavigne, Franck (4 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences of the United States of America. 110 (42): 16742–7. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132. Retrieved 1 October 2013.
  25. "Mystery 13th Century eruption traced to Lombok, Indonesia". BBC News. 30 September 2013. Retrieved 1 October 2013.
  26. Miller et al. 2012. "Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks" Geophysical Research Letters 39, January 31
  27. Lavigne, Franck; et al. (2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". PNAS. 110 (42): 16742–16747. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132.
  28. Was the Little Ice Age Triggered by Massive Volcanic Eruptions? ScienceDaily, 30 January 2012 (accessed 21 May 2012)
  29. Jiandong Xu et al. 2013. "Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wiggle-match dating" Geophysical Research Letters 40 http://academiccommons.columbia.edu/download/fedora_content/download/ac:162055/CONTENT/XU_et_al_2013_GRL.pdf
  30. van den Bogaard, P (1995). 40Ar/(39Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance
  31. De Klerk, Pim; Janke, Wolfgang; Kühn, Peter; Theuerkauf, Martin (2008). "Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)". Palaeogeography, Palaeoclimatology, Palaeoecology. 270 (1–2): 196–214. Bibcode:2008PPP...270..196D. doi:10.1016/j.palaeo.2008.09.013.
  32. Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research. 58 (3): 273–288. Bibcode:2002QuRes..58..273B. doi:10.1006/qres.2002.2379.
  33. Forscher warnen vor Vulkan-Gefahr in der Eifel. Spiegel Online, 13. February 2007. Retrieved January 11, 2008
  34. Carey, Steven N.; Sigurdsson, Haraldur (1980). "The Roseau Ash: Deep-sea Tephra Deposits from a Major Eruption on Dominica, Lesser Antilles Arc". Journal of Volcanology and Geothermal Research. 7 (1–2): 67–86. Bibcode:1980JVGR....7...67C. doi:10.1016/0377-0273(80)90020-7.
  35. Alloway, Brent V.; Agung Pribadi; John A. Westgate; Michael Bird; L. Keith Fifield; Alan Hogg; Ian Smith (30 October 2004). "Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra". Earth and Planetary Science Letters. Elsevier. 227 (1–2): 121–133. Bibcode:2004E&PSL.227..121A. doi:10.1016/j.epsl.2004.08.014.
  36. Twickler and K. Taylor, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Taylor, K. (1996). "Potential Atmospheric impact of the Toba mega-eruption ~71'000 years ago". Geophysical Research Letters. American Geophysical Union. 23 (8): 837–840. Bibcode:1996GeoRL..23..837Z. doi:10.1029/96GL00706.
  37. Jones, S.C. (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and Paleoanthropological implications; in The evolution and history of human populations in South Asia (eds.) M D Petraglia and B Allchin (New York: Springer Press) pp. 173–200
  38. Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified" (PDF). Geology. 19 (3): 200–203. Bibcode:1991Geo....19..200C. doi:10.1130/0091-7613(1991)019<0200:EHOESL>2.3.CO;2. Retrieved 2010-01-20.
  39. Ninkovich, D.; N.J. Shackleton; A.A. Abdel-Monem; J.D. Obradovich; G. Izett (7 December 1978). "K−Ar age of the late Pleistocene eruption of Toba, north Sumatra". Nature. Nature Publishing Group. 276 (5688): 574–577. Bibcode:1978Natur.276..574N. doi:10.1038/276574a0.
  40. "Guatemala Volcanoes and Volcanics". USGS - CVO. Retrieved 2010-03-13.
  41. "Cities on Volcanoes 5". www.eri.u-tokyo.ac.jp.
  42. "Sierra la Primavera". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-24.
  43. "GEOLOGIC SETTING OF THE UZON CALDERA, KAMCHATKA, FAR EAST RUSSIA". gsa.confex.com.
  44. Uzon, Global Volcanism Program, Smithsonian Institution
  45. Sruoga, Patricia; Eduardo J. Llambías; Luis Fauqué; David Schonwandt; David G. Repol (September 2005). "Volcanological and geochemical evolution of the Diamante Caldera–Maipo volcano complex in the southern Andes of Argentina (34°10′S)". Journal of South American Earth Sciences. 19 (4): 399–414. Bibcode:2005JSAES..19..399S. doi:10.1016/j.jsames.2005.06.003.
  46. Karlstrom, K.; Crow, R.; Peters, L.; McIntosh, W.; Raucci, J.; Crossey, L.; Umhoefer, P. (2007). "40Ar/39Ar and field studies of Quaternary basalts in Grand Canyon and model for carving Grand Canyon: Quantifying the interaction of river incision and normal faulting across the western edge of the Colorado Plateau". GSA Bulletin. 119 (11/12): 1283–1312. Bibcode:2007GSAB..119.1283K. doi:10.1130/0016-7606(2007)119[1283:AAFSOQ]2.0.CO;2.
  47. Hildreth, W. (1979), Sarna-Wojcicki et al. (2000).
  48. Izett, Glen A. (1981).
  49. Heiken et al. (1990).
  50. Ben G. Mason; David M. Pyle; Clive Oppenheimer (2004). "The size and frequency of the largest explosive eruptions on Earth". Bulletin of Volcanology. 66 (8): 735–748. Bibcode:2004BVol...66..735M. doi:10.1007/s00445-004-0355-9.
  51. Wood, Charles A.; Jűrgen Kienle (1990). Volcanoes of North America. Cambridge University Press. pp. 170–172.
  52. Geological origins Archived 2008-09-07 at the Wayback Machine, Norfolk Island Tourism. Accessed 2007-04-13.
  53. Ort, M. H.; de Silva, S.; Jiminez, N.; Salisbury, M.; Jicha, B. R. and Singer, B. S. (2009). Two new supereruptions in the Altiplano-Puna Volcanic Complex of the Central Andes.
  54. Lindsay, Jan M.; Tim J. Worthington; Ian E. M. Smith; Philippa M. Black (June 1999). "Geology, petrology, and petrogenesis of Little Barrier Island, Hauraki Gulf, New Zealand" (PDF). New Zealand Journal of Geology and Geophysics. 42 (2): 155–168. doi:10.1080/00288306.1999.9514837. Archived from the original (PDF) on November 1, 2004. Retrieved 2007-12-03.
  55. Philippe Nonnotte. "Étude volcano-tectonique de la zone de divergence Nord-Tanzanienne (terminaison sud du rift kenyan) Caractérisation pétrologique et géochimique du volcanisme récent (8 Ma – Actuel) et du manteau source Contraintes de mise en place thèse de doctorat de l'université de Bretagne occidentale, spécialité : géosciences marines" (PDF).
  56. Lindsay J. M.; de Silva S.; Trumbull R.; Emmermann R.; Wemmer K. (2001). "La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas". Journal of Volcanology and Geothermal Research. 106 (1–2): 145–173. Bibcode:2001JVGR..106..145L. doi:10.1016/S0377-0273(00)00270-5.
  57. "Frailes Plateau".
  58. Morgan, Lisa A. Morgan; William C. McIntosh (March 2005). "Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA" (PDF). GSA Bulletin. 117 (3–4): 288–306. Bibcode:2005GSAB..117..288M. doi:10.1130/B25519.1. Archived from the original (PDF) on 2011-10-03. Retrieved 2010-03-16.
  59. Salisbury, M. J.; Jicha, B. R.; de Silva, S. L.; Singer, B. S.; Jimenez, N. C.; Ort, M. H. (21 December 2010). "40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province". Geological Society of America Bulletin. 123 (5–6): 821–840. Bibcode:2011GSAB..123..821S. doi:10.1130/B30280.1.
  60. Geography and Geology, Lord Howe Island Tourism Association. Retrieved on 2009-04-20.
  61. "Cerro Panizos". Volcano World. Retrieved 2010-03-15.
  62. Te Ara - the Encyclopedia of New Zealand
  63. "Mark Anders: Yellowstone hotspot track". Columbia University, Lamont-Doherty Earth Observatory (LDEO). Retrieved 2010-03-16.
  64. Coombs, D. S., Dunedin Volcano, Misc. Publ. 37B, pp. 2–28, Geol. Soc. of N. Z., Dunedin, 1987.
  65. Coombs, D. S., R. A. Cas, Y. Kawachi, C. A. Landis, W. F. Mc-Donough, and A. Reay, Cenozoic volcanism in north, east and central Otago, Bull. R. Soc. N. Z., 23, 278–312, 1986.
  66. Bishop, D.G., and Turnbull, I.M. (compilers) (1996). Geology of the Dunedin Area. Lower Hutt, NZ: Institute of Geological & Nuclear Sciences. ISBN 0-478-09521-X.
  67. Sawyer, David A.; R. J. Fleck; M. A. Lanphere; R. G. Warren; D. E. Broxton; Mark R. Hudson (October 1994). "Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension". Geological Society of America Bulletin. 106 (10): 1304–1318. Bibcode:1994GSAB..106.1304S. doi:10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2.
  68. http://www-odp.tamu.edu/Publications/157_SR/VOLUME/CHAP_14.PDF
  69. Lipman, P.W. (September 30, 1984). "The Roots of Ash Flow Calderas in Western North America: Windows Into the Tops of Granitic Batholiths". Journal of Geophysical Research. 89 (B10): 8801–8841. Bibcode:1984JGR....89.8801L. doi:10.1029/JB089iB10p08801.
  70. Rytuba, James J.; John, David A.; McKee, Edwin H. Volcanism Associated with Eruption of the Steens Basalt and Inception of the Yellowstone Hotspot. Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting (May 3–5, 2004). Paper No. 44-2. Archived from the original on 2010-12-23. Retrieved 2010-03-26.
  71. Steve Ludington; Dennis P. Cox; Kenneth W. Leonard & Barry C. Moring (1996). "Chapter 5, Cenozoic Volcanic Geology in Nevada" (PDF). In Donald A. Singer (ed.). An Analysis of Nevada's Metal-Bearing Mineral Resources. Nevada Bureau of Mines and Geology, University of Nevada. Archived from the original (PDF) on 2006-02-04.
  72. Rytuba, J.J.; McKee, E.H. (1984). "Peralkaline ash flow tuffs and calderas of the McDermitt Volcanic Field, southwest Oregon and north central Nevada". Journal of Geophysical Research. 89 (B10): 8616–8628. Bibcode:1984JGR....89.8616R. doi:10.1029/JB089iB10p08616. Retrieved 2010-03-23.
  73. Matthew A. Coble & Gail A. Mahood (2008). "New geologic evidence for additional 16.5–15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot". Earth and Environmental Science 3. Collapse Calderas Workshop, IOP Conf. Series. 3 (1): 012002. Bibcode:2008E&ES....3a2002C. doi:10.1088/1755-1307/3/1/012002.
  74. Carson, Robert J.; Pogue, Kevin R. (1996). Flood Basalts and Glacier Floods:Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington. Washington State Department of Natural Resources (Washington Division of Geology and Earth Resources Information Circular 90).
  75. Reidel, Stephen P. (2005). "A Lava Flow without a Source: The Cohasset Flow and Its Compositional Members". The Journal of Geology. 113 (1): 1–21. Bibcode:2005JG....113....1R. doi:10.1086/425966.
  76. Brueseke, M.E.; Heizler, M.T.; Hart, W.K.; S.A. Mertzman (15 March 2007). "Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited". Journal of Volcanology and Geothermal Research. 161 (3): 187–214. Bibcode:2007JVGR..161..187B. doi:10.1016/j.jvolgeores.2006.12.004.
  77. SummitPost.org, Southeast Oregon Basin and Range
  78. USGS, Andesitic and basaltic rocks on Steens Mountain
  79. GeoScienceWorld, Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon
  80. "Oregon: A Geologic History. 8. Columbia River Basalt: the Yellowstone hot spot arrives in a flood of fire". Oregon Department of Geology and Mineral Industries. Retrieved 2010-03-26.
  81. Madsen, J.K.; Thorkelson, D.J.; Friedman, R.M.; Marshall, D.D. (6 May 2018). "Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America". Geosphere. 2 (1): 11. Bibcode:2006Geosp...2...11M. doi:10.1130/ges00020.1.
  82. Largest explosive eruptions: New results for the 27.8 Ma Fish Canyon Tuff and the La Garita caldera, San Juan volcanic field, Colorado Archived 2011-05-19 at the Wayback Machine
  83. Olivier Bachmann; Michael A. Dungan; Peter W. Lipman (2002). "The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith". Journal of Petrology. 43 (8): 1469–1503. Bibcode:2002JPet...43.1469B. doi:10.1093/petrology/43.8.1469. Retrieved 2010-03-16.
  84. Ingrid Ukstins Peate; Joel A. Baker; Mohamed Al-Kadasi; Abdulkarim Al-Subbary; Kim B. Knight; Peter Riisager; Matthew F. Thirlwall; David W. Peate; Paul R. Renne; Martin A. Menzies (2005). "Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen". Bulletin of Volcanology. 68 (2): 135–156. Bibcode:2005BVol...68..135P. doi:10.1007/s00445-005-0428-4..
  85. George A. Morris & Robert A. Creaser (2003). "Crustal recycling during subduction at the Eocene Cordilleran margin of North America: a petrogenetic study from the southwestern Yukon". Canadian Journal of Earth Sciences. 40 (12): 1805–1821. doi:10.1139/e03-063.
  86. Sur l'âge des trapps basaltiques (On the ages of flood basalt events); Vincent E. Courtillot & Paul R. Renneb; Comptes Rendus Geoscience; Vol: 335 Issue: 1, January, 2003; pp: 113–140
  87. ASH FALL: Newsletter of the Volcanology and Igneous Petrology Division Geological Association of Canada Retrieved on 2007-09-21
  88. "Muskox Property - The Muskox Intrusion". Archived from the original on 2009-04-08.
  89. The 1.27 Ga Mackenzie Large Igneous Province and Muskox layered intrusion
  90. "Westward Migrating Ignimbrite Calderas and a Large Radiating Mafic Dike Swarm of Oligocene Age, Central Rio Grande Rift, New Mexico: Surface Expression of an Upper Mantle Diapir?" (PDF). New Mexico Tech. Retrieved 2010-03-21.
  91. Fialko, Y., and M. Simons, Evidence for on-going inflation of the Socorro magma body, New Mexico, from interferometric synthetic aperture radar imaging Geop. Res. Lett., 28, 3549–3552, 2001.
  92. "Socorro Magma Body". New Mexico Tech. Archived from the original on 2010-06-15. Retrieved 2010-03-21.
  93. "Figure: Calderas within southwestern Nevada volcanic field". Los Alamos National Laboratory. Retrieved 2010-03-16.
  94. Smith, E.I. & D.L. Keenan (30 August 2005). "Yucca Mountain Could Face Greater Volcanic Threat" (PDF). Eos, Transactions, American Geophysical Union. 86 (35): 317. Bibcode:2005EOSTr..86..317S. CiteSeerX 10.1.1.371.6505. doi:10.1029/2005eo350001. Retrieved 5 April 2016.
  95. Geologic Provinces of the United States: Basin and Range Province on USGS.gov website Archived 2009-01-25 at the Wayback Machine Retrieved 9 November 2009
  96. Doell, R.R., Dalrymple, G.B., Smith, R.L., and Bailey, R.A., 1986, Paleomagnetism, potassium-argon ages, and geology of rhyolite and associated rocks of the Valles Caldera, New Mexico: Geological Society of America Memoir 116, p. 211-248.
  97. Izett, G.A., Obradovich, J.D., Naeser, C.W., and Cebula, G.T., 1981, Potassium-argon and fission-track ages of Cerro Toledo rhyolite tephra in the Jemez Mountains, New Mexico, in Shorter contributions to isotope research in the western United States: U.S. Geological Survey Professional Paper 1199-D, p. 37-43.
  98. Christiansen, R.L., and Blank, H.R., 1972, Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park: U.S. Geological Survey Professional Paper 729-B, p. 18.
  99. Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr" (PDF). Quaternary Research. 67 (1): 57–68. Bibcode:2007QuRes..67...57S. doi:10.1016/j.yqres.2006.07.004. Retrieved 2010-03-18.
  100. "VEI glossary entry". USGS. Retrieved 2010-03-30.
  101. "Volcanic Sulfur Aerosols Affect Climate and the Earth's Ozone Layer - Volcanic ash vs sulfur aerosols". U.S. Geological Survey. Retrieved 2010-04-21.
  102. http://earthobservatory.nasa.gov/IOTD/view.php?id=38975 Earth Observatory - Sarychev Eruption
  103. Jones, M.T., Sparks, R.S.J., and Valdes, P.J. (2007). "The climatic impact of supervolcanis ash blankets". Climate Dynamics. 29 (6): 553–564. Bibcode:2007ClDy...29..553J. doi:10.1007/s00382-007-0248-7.CS1 maint: multiple names: authors list (link)
  104. Jones, G.S., Gregory, J.M., Scott, P.A., Tett, S.F.B., Thorpe, R.B., 2005. An AOGCM model of the climate response to a volcanic super-eruption. Climate Dynamics 25, 725–738
  105. Dai, Jihong; Ellen Mosley-Thompson; Lonnie G. Thompson (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research: Atmospheres. 96 (D9): 17, 361–17, 366. Bibcode:1991JGR....9617361D. doi:10.1029/91jd01634.
  106. http://www.esrl.noaa.gov/gmd/grad/mloapt.html Atmospheric transmission of direct solar radiation (Preliminary) at Mauna Loa, Hawaii
  107. "Mt. Pinatubo's cloud shades global climate". Science News. Retrieved 2010-03-07.
  108. Jones, P.D., Wigley, T.M.I, and Kelly, P.M. (1982), Variations in surface air temperatures: Part I. Northern Hemisphere, 1881–1980: Monthly Weather Review, v.110, p. 59-70.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.