Graben

In geology, a graben (/ˈɡrɑːbən/) is a depressed block of the crust of a planet bordered by parallel faults.

Diagram illustrating the structural relationship between grabens and horsts
Infrared-enhanced satellite image of a graben in the Afar Depression

Etymology

Graben is German for ditch or trench. The plural form is either graben[1] or grabens.[2] The German plural is Gräben.

Formation

A graben is a valley with a distinct escarpment on each side caused by the displacement of a block of land downward. Graben often occur side-by-side with horsts. Horst and graben structures indicate tensional forces and crustal stretching.

Graben are produced from parallel normal faults, where the displacement of the hanging wall is downward, while that of the footwall is upward. The faults typically dip toward the center of the graben from both sides. Horsts are parallel blocks that remain between graben; the bounding faults of a horst typically dip away from the center line of the horst. Single or multiple graben can produce a rift valley.

Half-graben

The Newark Basin, an early Mesozoic half-graben

In many rifts, the graben are asymmetric, with a major fault along only one of the boundaries, and these are known as half-graben. The polarity (throw direction) of the main bounding faults typically alternates along the length of the rift. The asymmetry of a half-graben strongly affects syntectonic deposition. Comparatively little sediment enters the half-graben across the main bounding fault because of footwall uplift on the drainage systems. The exception is at any major offset in the bounding fault, where a relay ramp may provide an important sediment input point. Most of the sediment will enter the half-graben down the unfaulted hanging wall side (e.g. Lake Baikal).[3]

Rima Ariadaeus on the Moon is thought to be a graben. The lack of erosion on the Moon makes its structure with two parallel faults and the sunken block in between particularly obvious.

Examples

Antarctica

Africa

Asia

Europe

North America

Canada

Guatemala

United States

Multi-national

Oceania

South America

gollark: "Learn to code lasers"?
gollark: Oh, and to be nice to the server my thing only scans for entities every ~4 ticks, so sometimes it misses really nearby lasers.
gollark: I'm not sure why, but I never got it to work correctly.
gollark: The timing *shouldn't* be hard; you should just be able to use the perfectly knowable velocity of the laser; but it somehow is.
gollark: You don't need full pathing. In most situations it'd probably just be raycasting to determine the best available direction.

See also

Notes

  1. Schlumberger Oilfield Glossary
  2. "horst and graben". Encyclopædia Britannica. Retrieved 2012-11-15.
  3. Hans Nelson, C.; Karabanov, Evgeny B.; Colman, Steven M.; Escutia, Carlota (1999). "Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia". Geology. 27 (2): 163–166. doi:10.1130/0091-7613(1999)027<0163:TASSCO>2.3.CO;2.
  4. Sprigg, R.C. (1961). "The Oil and Gas Prospects of the St. Vincents Gulf Graben". The APPEA Journal. 1 (1): 71–88. doi:10.1071/AJ60011.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.