Cerium(III) oxide

Cerium(III) oxide, also known as cerium oxide, cerium trioxide, cerium sesquioxide, cerous oxide or dicerium trioxide, is an oxide of the rare-earth metal cerium. It has chemical formula Ce2O3 and is gold-yellow in color.

Cerium(III) oxide
Names
IUPAC name
Cerium(III) oxide
Other names
Cerium sesquioxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.014.289
EC Number
  • 234-374-3
UNII
Properties
Ce2O3
Molar mass 328.24 g/mol
Appearance yellow-green dust
Density 6.2 g/cm3
Melting point 2,177 °C (3,951 °F; 2,450 K)
Boiling point 3,730 °C (6,750 °F; 4,000 K)
insoluble
Solubility in sulfuric acid soluble
Solubility in hydrochloric acid insoluble
Structure
Hexagonal, hP5
P3m1, No. 164
Hazards
GHS pictograms
Related compounds
Other anions
Cerium(III) chloride
Other cations
Lanthanum oxide, Praseodymium(III) oxide
Related compounds
CeO2
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Applications

Engine and exhaust catalysts

Cerium oxide is used as a catalytic converter for the minimisation of CO emissions in the exhaust gases from motor vehicles.

When there is a shortage of oxygen, cerium(IV) oxide is reduced by carbon monoxide to cerium(III) oxide:

2 CeO
2
+ CO → Ce
2
O
3
+ CO
2

When there is an oxygen surplus, the process is reversed and cerium(III) oxide is oxidized to cerium(IV) oxide:

2 Ce
2
O
3
+ O
2
→ 4 CeO
2

Major automotive applications for cerium(III) oxide are, as a catalytic converter for the oxidation of CO and NOx emissions in the exhaust gases from motor vehicles,[1][2] and secondly, cerium oxide finds use as a fuel additive to diesel fuels, which results in increased fuel efficiency and decreased hydrocarbon derived particulate matter emissions,[3] however the health effects of the cerium oxide bearing engine exhaust is a point of study and dispute.[4][5][6]

Water splitting

The cerium(IV) oxide–cerium(III) oxide cycle or CeO2/Ce2O3 cycle is a two step thermochemical water splitting process based on cerium(IV) oxide and cerium(III) oxide for hydrogen production.[7]

Photoluminescence

Cerium(III) oxide combined with tin(II) oxide (SnO) in ceramic form is used for illumination with UV light. It absorbs light with a wavelength of 320 nm and emits light with a wavelength of 412 nm.[8] This combination of cerium(III) oxide and tin(II) oxide is rare, and obtained only with difficulty on a laboratory scale.

Production

Cerium(III) oxide is produced by the reduction of cerium(IV) oxide with hydrogen at approximately 1,400 °C (2,550 °F). Samples produced in this way are only slowly air-oxidized back to the dioxide at room temperature.[9]

gollark: Thanks!
gollark: I think this is technically possible to implement, so bee⁻¹ you.
gollark: This is underspecified because bee² you, yes.
gollark: All numbers are two's complement because bee you.
gollark: The rest of the instruction consists of variable-width (for fun) target specifiers. The first N target specifiers in an operation are used as destinations and the remaining ones as sources. N varies per opcode. They can be of the form `000DDD` (pop/push from/to stack index DDD), `001EEE` (peek stack index EEE if source, if destination then push onto EEE if it is empty), `010FFFFFFFF` (8-bit immediate value FFFFFFFF; writes are discarded), `011GGGGGGGGGGGGGGGG` (16-bit immediate value GGGGGGGGGGGGGGGG; writes are also discarded), `100[H 31 times]` (31-bit immediate because bee you), `101IIIIIIIIIIIIIIII` (16 bits of memory location relative to the base memory address register of the stack the operation is conditional on), `110JJJJJJJJJJJJJJJJ` (16 bit memory location relative to the top value on that stack instead), `1111LLLMMM` (memory address equal to base memory address of stack LLL plus top of stack MMM), or `1110NNN` (base memory address register of stack MMM).Opcodes (numbered from 0 in order): MOV (1 source, as many destinations as can be parsed validly; the value is copied to all of them), ADD (1 destination, multiple sources), JMP (1 source), NOT (same as MOV), WR (write to output port; multiple sources, first is port number), RE (read from input port; one source for port number, multiple destinations), SUB, AND, OR, XOR, SHR, SHL (bitwise operations), MUL, ROR, ROL, NOP, MUL2 (multiplication with two outputs).

References

  1. Bleiwas, D.I. (2013). Potential for Recovery of Cerium Contained in Automotive Catalytic Converters. Reston, Va.: U.S. Department of the Interior, U.S. Geological Survey.
  2. "Argonne's deNOx Catalyst Begins Extensive Diesel Engine Exhaust Testing". Archived from the original on 2015-09-07. Retrieved 2014-06-02.
  3. "Exploring Nano-sized Fuel Additives EPA scientists examine nanoparticle impacts on vehicle emissions and air pollution".
  4. "Nanoparticles used as additives in diesel fuels can travel from lungs to liver, November 18, 2011. Marshall University Research Corporation".
  5. Park, B.; Donaldson, K.; Duffin, R.; Tran, L.; Kelly, F.; Mudway, I.; Morin, J. P.; Guest, R.; Jenkinson, P.; Samaras, Z.; Giannouli, M.; Kouridis, H.; Martin, P. (Apr 2008). "Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive - a case study". Inhal Toxicol. 20 (6): 547–66. doi:10.1080/08958370801915309. PMID 18444008.
  6. "Exploring Nano-sized Fuel Additives EPA scientists examine nanoparticle impacts on vehicle emissions and air pollution".
  7. Hydrogen production from solar thermochemical water splitting cycles Archived August 30, 2009, at the Wayback Machine
  8. Peplinski, D.R.; Wozniak, W. T.; Moser, J. B. (1980). "Spectral Studies of New Luminophors for Dental Porcelain". Journal of Dental Research. 59 (9): 1501–1509. doi:10.1177/00220345800590090801. PMID 6931128.
  9. Y. Wetzel (1963). "Scandium, Yttrium, Rare Earths". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. 1. NY,NY: Academic Press. p. 1151.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.