CD23

CD23, also known as Fc epsilon RII, or FcεRII, is the "low-affinity" receptor for IgE, an antibody isotype involved in allergy and resistance to parasites, and is important in regulation of IgE levels. Unlike many of the antibody receptors, CD23 is a C-type lectin. It is found on mature B cells, activated macrophages, eosinophils, follicular dendritic cells, and platelets.

FCER2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesFCER2, BLAST-2, CD23, CD23A, CLEC4J, FCE2, IGEBF, Fc fragment of IgE receptor II
External IDsOMIM: 151445 MGI: 95497 HomoloGene: 1517 GeneCards: FCER2
Gene location (Human)
Chr.Chromosome 19 (human)[1]
Band19p13.2Start7,688,758 bp[1]
End7,702,146 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

2208

14128

Ensembl

ENSG00000104921

ENSMUSG00000005540

UniProt

P06734

P20693

RefSeq (mRNA)

NM_001207019
NM_001220500
NM_002002

RefSeq (protein)

NP_001193948
NP_001207429
NP_001993

Location (UCSC)Chr 19: 7.69 – 7.7 MbChr 8: 3.68 – 3.69 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

There are two forms of CD23: CD23a and CD23b. CD23a is present on follicular B cells, whereas CD23b requires IL-4 to be expressed on T-cells, monocytes, Langerhans cells, eosinophils, and macrophages.[5]

Function

CD23 is known to have a role of transportation in antibody feedback regulation. Antigens which enter the blood stream can be captured by antigen specific IgE antibodies. The IgE immune complexes that are formed bind to CD23 molecules on B cells, and are transported to the B cell follicles of the spleen. The antigen is then transferred from CD23+ B cells to CD11c+ antigen presenting cells. The CD11c+ cells in turn present the antigen to CD4+ T cells, which can lead to an enhanced antibody response.[6]

Clinical significance

The allergen responsible in dust mite allergy Der p 1 is known to cleave CD23 from a cell’s surface. As CD23 is soluble, it can move freely and interact with cells in plasma. Recent studies have shown that increased levels of soluble CD23 cause the recruitment of non-sensitised B-cells in the presentation of antigen peptides to allergen-specific B-cells, therefore increasing the production of allergen specific IgE. IgE, in turn, is known to upregulate the cellular expression of CD23 and Fc epsilon RI (high-affinity IgE receptor).

In flow cytometry, CD23 is helpful in the differentiation of chronic lymphocytic leukemia (CD23-positive) from mantle cell lymphoma (CD23-negative).[7] CD23 can also be demonstrated in germinal centre B-cells using immunohistochemistry, but it is not present in the resting cells of the surrounding mantle zone. Lymphomas arising from the mantle zone are generally negative for CD23, but most B-cell chronic lymphomocytic leukaemias and low-grade B-cell lymphomas are positive, allowing immunohistochemistry to distinguish these conditions, which otherwise have a similar appearance. Reed–Sternberg cells are usually positive for CD23.[8]

gollark: Nooo! How will I get free nebulae and hatch them relatively fast now?!
gollark: Being able to hold 18 hatchlings now is super-convenient.
gollark: Well, in 4 hours... whatever...
gollark: Ah, that 2G prize should be reaching the AP soonish.
gollark: * nooooooo

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000104921 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000005540 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lichtman AH, Abbas AK (2003). Cellular and molecular immunology. Philadelphia: Saunders. pp. 324–325. ISBN 0-7216-0008-5.
  6. Henningsson F, Ding Z, Dahlin JS, Linkevicius M, Carlsson F, Grönvik KO, Hallgren J, Heyman B (2011). Metzger DW (ed.). "IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells". PLOS ONE. 6 (7): e21760. Bibcode:2011PLoSO...621760H. doi:10.1371/journal.pone.0021760. PMC 3130775. PMID 21765910.
  7. Barna G, Reiniger L, Tátrai P, Kopper L, Matolcsy A (Sep 2008). "The cut-off levels of CD23 expression in the differential diagnosis of MCL and CLL". Hematological Oncology. 26 (3): 167–70. doi:10.1002/hon.855. PMID 18381689.
  8. Cooper K, Leong AS (2003). Manual of diagnostic antibodies for immunohistology. London: Greenwich Medical Media. p. 95. ISBN 1-84110-100-1.

Further reading

  • Human FCER2 genome location and FCER2 gene details page in the UCSC Genome Browser.
  • PDBe-KB provides an overview of all the structure information available in the PDB for Human Low affinity immunoglobulin epsilon Fc receptor


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.