Repunit
In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.[note 1]
No. of known terms | 9 |
---|---|
Conjectured no. of terms | Infinite |
First terms | 11, 1111111111111111111, 11111111111111111111111 |
Largest known term | (10270343−1)/9 |
OEIS index |
|
A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes.
Definition
The base-b repunits are defined as (this b can be either positive or negative)
Thus, the number Rn(b) consists of n copies of the digit 1 in base-b representation. The first two repunits base-b for n = 1 and n = 2 are
In particular, the decimal (base-10) repunits that are often referred to as simply repunits are defined as
Thus, the number Rn = Rn(10) consists of n copies of the digit 1 in base 10 representation. The sequence of repunits base-10 starts with
Similarly, the repunits base-2 are defined as
Thus, the number Rn(2) consists of n copies of the digit 1 in base-2 representation. In fact, the base-2 repunits are the well-known Mersenne numbers Mn = 2n − 1, they start with
Properties
- Any repunit in any base having a composite number of digits is necessarily composite. Only repunits (in any base) having a prime number of digits might be prime. This is a necessary but not sufficient condition. For example,
- R35(b) = 11111111111111111111111111111111111 = 11111 × 1000010000100001000010000100001 = 1111111 × 10000001000000100000010000001,
- since 35 = 7 × 5 = 5 × 7. This repunit factorization does not depend on the base-b in which the repunit is expressed.
- If p is an odd prime, then every prime q that divides Rp(b) must be either 1 plus a multiple of 2p, or a factor of b − 1. For example, a prime factor of R29 is 62003 = 1 + 2·29·1069. The reason is that the prime p is the smallest exponent greater than 1 such that q divides bp − 1, because p is prime. Therefore, unless q divides b − 1, p divides the Carmichael function of q, which is even and equal to q − 1.
- Any positive multiple of the repunit Rn(b) contains at least n nonzero digits in base-b.
- Any number x is a two-digit repunit in base x − 1.
- The only known numbers that are repunits with at least 3 digits in more than one base simultaneously are 31 (111 in base-5, 11111 in base-2) and 8191 (111 in base-90, 1111111111111 in base-2). The Goormaghtigh conjecture says there are only these two cases.
- Using the pigeon-hole principle it can be easily shown that for relatively prime natural numbers n and b, there exists a repunit in base-b that is a multiple of n. To see this consider repunits R1(b),...,Rn(b). Because there are n repunits but only n−1 non-zero residues modulo n there exist two repunits Ri(b) and Rj(b) with 1 ≤ i < j ≤ n such that Ri(b) and Rj(b) have the same residue modulo n. It follows that Rj(b) − Ri(b) has residue 0 modulo n, i.e. is divisible by n. Since Rj(b) − Ri(b) consists of j − i ones followed by i zeroes, Rj(b) − Ri(b) = Rj−i(b) × bi. Now n divides the left-hand side of this equation, so it also divides the right-hand side, but since n and b are relatively prime, n must divide Rj−i(b).
- The Feit–Thompson conjecture is that Rq(p) never divides Rp(q) for two distinct primes p and q.
- Using the Euclidean Algorithm for repunits definition: R1(b) = 1; Rn(b) = Rn−1(b) × b + 1, any consecutive repunits Rn−1(b) and Rn(b) are relatively prime in any base-b for any n.
- If m and n have a common divisor d, Rm(b) and Rn(b) have the common divisor Rd(b) in any base-b for any m and n. That is, the repunits of a fixed base form a strong divisibility sequence. As a consequence, If m and n are relatively prime, Rm(b) and Rn(b) are relatively prime. The Euclidean Algorithm is based on gcd(m, n) = gcd(m − n, n) for m > n. Similarly, using Rm(b) − Rn(b) × bm−n = Rm−n(b), it can be easily shown that gcd(Rm(b), Rn(b)) = gcd(Rm−n(b), Rn(b)) for m > n. Therefore if gcd(m, n) = d, then gcd(Rm(b), Rn(b)) = Rd(b).
Factorization of decimal repunits
(Prime factors colored red means "new factors", i. e. the prime factor divides Rn but does not divide Rk for all k < n) (sequence A102380 in the OEIS)[2]
|
|
|
Smallest prime factor of Rn for n > 1 are
Repunit primes
The definition of repunits was motivated by recreational mathematicians looking for prime factors of such numbers.
It is easy to show that if n is divisible by a, then Rn(b) is divisible by Ra(b):
where is the cyclotomic polynomial and d ranges over the divisors of n. For p prime,
which has the expected form of a repunit when x is substituted with b.
For example, 9 is divisible by 3, and thus R9 is divisible by R3—in fact, 111111111 = 111 · 1001001. The corresponding cyclotomic polynomials and are and , respectively. Thus, for Rn to be prime, n must necessarily be prime, but it is not sufficient for n to be prime. For example, R3 = 111 = 3 · 37 is not prime. Except for this case of R3, p can only divide Rn for prime n if p = 2kn + 1 for some k.
Decimal repunit primes
Rn is prime for n = 2, 19, 23, 317, 1031, ... (sequence A004023 in OEIS). R49081 and R86453 are probably prime. On April 3, 2007 Harvey Dubner (who also found R49081) announced that R109297 is a probable prime.[3] He later announced there are no others from R86453 to R200000.[4] On July 15, 2007 Maksym Voznyy announced R270343 to be probably prime,[5] along with his intent to search to 400000. As of November 2012, all further candidates up to R2500000 have been tested, but no new probable primes have been found so far.
It has been conjectured that there are infinitely many repunit primes[6] and they seem to occur roughly as often as the prime number theorem would predict: the exponent of the Nth repunit prime is generally around a fixed multiple of the exponent of the (N−1)th.
The prime repunits are a trivial subset of the permutable primes, i.e., primes that remain prime after any permutation of their digits.
Particular properties are
- The remainder of Rn modulo 3 is equal to the remainder of n modulo 3. Using 10a ≡ 1 (mod 3) for any a ≥ 0,
n ≡ 0 (mod 3) ⇔ Rn ≡ 0 (mod 3) ⇔ Rn ≡ 0 (mod R3),
n ≡ 1 (mod 3) ⇔ Rn ≡ 1 (mod 3) ⇔ Rn ≡ R1 ≡ 1 (mod R3),
n ≡ 2 (mod 3) ⇔ Rn ≡ 2 (mod 3) ⇔ Rn ≡ R2 ≡ 11 (mod R3).
Therefore, 3 | n ⇔ 3 | Rn ⇔ R3 | Rn. - The remainder of Rn modulo 9 is equal to the remainder of n modulo 9. Using 10a ≡ 1 (mod 9) for any a ≥ 0,
n ≡ r (mod 9) ⇔ Rn ≡ r (mod 9) ⇔ Rn ≡ Rr (mod R9),
for 0 ≤ r < 9.
Therefore, 9 | n ⇔ 9 | Rn ⇔ R9 | Rn.
Base 2 repunit primes
Base-2 repunit primes are called Mersenne primes.
Base 3 repunit primes
The first few base-3 repunit primes are
- 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 (sequence A076481 in the OEIS),
corresponding to of
Base 4 repunit primes
The only base-4 repunit prime is 5 (). , and 3 always divides when n is odd and when n is even. For n greater than 2, both and are greater than 3, so removing the factor of 3 still leaves two factors greater than 1. Therefore, the number cannot be prime.
Base 5 repunit primes
The first few base-5 repunit primes are
- 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531, 35032461608120426773093239582247903282006548546912894293926707097244777067146515037165954709053039550781, 815663058499815565838786763657068444462645532258620818469829556933715405574685778402862015856733535201783524826169013977050781 (sequence A086122 in the OEIS),
corresponding to of
Base 6 repunit primes
The first few base-6 repunit primes are
- 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371, 133733063818254349335501779590081460423013416258060407531857720755181857441961908284738707408499507 (sequence A165210 in the OEIS),
corresponding to of
Base 7 repunit primes
The first few base-7 repunit primes are
- 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457,
138502212710103408700774381033135503926663324993317631729227790657325163310341833227775945426052637092067324133850503035623601
corresponding to of
Base 8 repunit primes
The only base-8 repunit prime is 73 (). , and 7 divides when n is not divisible by 3 and when n is a multiple of 3.
Base 9 repunit primes
There are no base-9 repunit primes. , and both and are even and greater than 4.
Base 11 repunit primes
The first few base-11 repunit primes are
- 50544702849929377, 6115909044841454629, 1051153199500053598403188407217590190707671147285551702341089650185945215953, 567000232521795739625828281267171344486805385881217575081149660163046217465544573355710592079769932651989153833612198334843467861091902034340949
corresponding to of
Base 12 repunit primes
The first few base-12 repunit primes are
- 13, 157, 22621, 29043636306420266077, 43570062353753446053455610056679740005056966111842089407838902783209959981593077811330507328327968191581, 388475052482842970801320278964160171426121951256610654799120070705613530182445862582590623785872890159937874339918941
corresponding to of
Base 20 repunit primes
The first few base-20 repunit primes are
- 421, 10778947368421, 689852631578947368421
corresponding to of
Bases such that is prime for prime
Smallest base such that is prime (where is the th prime) are
- 2, 2, 2, 2, 5, 2, 2, 2, 10, 6, 2, 61, 14, 15, 5, 24, 19, 2, 46, 3, 11, 22, 41, 2, 12, 22, 3, 2, 12, 86, 2, 7, 13, 11, 5, 29, 56, 30, 44, 60, 304, 5, 74, 118, 33, 156, 46, 183, 72, 606, 602, 223, 115, 37, 52, 104, 41, 6, 338, 217, 13, 136, 220, 162, 35, 10, 218, 19, 26, 39, 12, 22, 67, 120, 195, 48, 54, 463, 38, 41, 17, 808, 404, 46, 76, 793, 38, 28, 215, 37, 236, 59, 15, 514, 260, 498, 6, 2, 95, 3, ... (sequence A066180 in the OEIS)
Smallest base such that is prime (where is the th prime) are
- 3, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 16, 61, 2, 6, 10, 6, 2, 5, 46, 18, 2, 49, 16, 70, 2, 5, 6, 12, 92, 2, 48, 89, 30, 16, 147, 19, 19, 2, 16, 11, 289, 2, 12, 52, 2, 66, 9, 22, 5, 489, 69, 137, 16, 36, 96, 76, 117, 26, 3, 159, 10, 16, 209, 2, 16, 23, 273, 2, 460, 22, 3, 36, 28, 329, 43, 69, 86, 271, 396, 28, 83, 302, 209, 11, 300, 159, 79, 31, 331, 52, 176, 3, 28, 217, 14, 410, 252, 718, 164, ... (sequence A103795 in the OEIS)
bases such that is prime (only lists positive bases) | OEIS sequence | |
2 | 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270, 276, 280, 282, 292, 306, 310, 312, 316, 330, 336, 346, 348, 352, 358, 366, 372, 378, 382, 388, 396, 400, 408, 418, 420, 430, 432, 438, 442, 448, 456, 460, 462, 466, 478, 486, 490, 498, 502, 508, 520, 522, 540, 546, 556, 562, 568, 570, 576, 586, 592, 598, 600, 606, 612, 616, 618, 630, 640, 642, 646, 652, 658, 660, 672, 676, 682, 690, 700, 708, 718, 726, 732, 738, 742, 750, 756, 760, 768, 772, 786, 796, 808, 810, 820, 822, 826, 828, 838, 852, 856, 858, 862, 876, 880, 882, 886, 906, 910, 918, 928, 936, 940, 946, 952, 966, 970, 976, 982, 990, 996, ... | A006093 |
3 | 2, 3, 5, 6, 8, 12, 14, 15, 17, 20, 21, 24, 27, 33, 38, 41, 50, 54, 57, 59, 62, 66, 69, 71, 75, 77, 78, 80, 89, 90, 99, 101, 105, 110, 111, 117, 119, 131, 138, 141, 143, 147, 150, 153, 155, 161, 162, 164, 167, 168, 173, 176, 188, 189, 192, 194, 203, 206, 209, 215, 218, 231, 236, 245, 246, 266, 272, 278, 279, 287, 288, 290, 293, 309, 314, 329, 332, 336, 342, 344, 348, 351, 357, 369, 378, 381, 383, 392, 395, 398, 402, 404, 405, 414, 416, 426, 434, 435, 447, 453, 455, 456, 476, 489, 495, 500, 512, 518, 525, 530, 531, 533, 537, 540, 551, 554, 560, 566, 567, 572, 579, 582, 584, 603, 605, 609, 612, 621, 624, 626, 635, 642, 644, 668, 671, 677, 686, 696, 701, 720, 726, 728, 735, 743, 747, 755, 761, 762, 768, 773, 782, 785, 792, 798, 801, 812, 818, 819, 825, 827, 836, 839, 846, 855, 857, 860, 864, 875, 878, 890, 894, 897, 899, 911, 915, 918, 920, 927, 950, 959, 960, 969, 974, 981, 987, 990, 992, 993, ... | A002384 |
5 | 2, 7, 12, 13, 17, 22, 23, 24, 28, 29, 30, 40, 43, 44, 50, 62, 63, 68, 73, 74, 77, 79, 83, 85, 94, 99, 110, 117, 118, 120, 122, 127, 129, 134, 143, 145, 154, 162, 164, 165, 172, 175, 177, 193, 198, 204, 208, 222, 227, 239, 249, 254, 255, 260, 263, 265, 274, 275, 277, 285, 288, 292, 304, 308, 327, 337, 340, 352, 359, 369, 373, 393, 397, 408, 414, 417, 418, 437, 439, 448, 457, 459, 474, 479, 490, 492, 495, 503, 505, 514, 519, 528, 530, 538, 539, 540, 550, 557, 563, 567, 568, 572, 579, 594, 604, 617, 637, 645, 650, 662, 679, 694, 699, 714, 728, 745, 750, 765, 770, 772, 793, 804, 805, 824, 837, 854, 860, 864, 868, 880, 890, 919, 942, 954, 967, 968, 974, 979, ... | A049409 |
7 | 2, 3, 5, 6, 13, 14, 17, 26, 31, 38, 40, 46, 56, 60, 61, 66, 68, 72, 73, 80, 87, 89, 93, 95, 115, 122, 126, 128, 146, 149, 156, 158, 160, 163, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 251, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 349, 350, 353, 363, 381, 395, 399, 404, 405, 417, 418, 436, 438, 447, 450, 461, 464, 466, 478, 523, 531, 539, 548, 560, 583, 584, 591, 599, 609, 611, 622, 646, 647, 655, 657, 660, 681, 698, 700, 710, 717, 734, 760, 765, 776, 798, 800, 802, 805, 822, 842, 856, 863, 870, 878, 899, 912, 913, 926, 927, 931, 940, 941, 942, 947, 959, 984, 998, ... | A100330 |
11 | 5, 17, 20, 21, 30, 53, 60, 86, 137, 172, 195, 212, 224, 229, 258, 268, 272, 319, 339, 355, 365, 366, 389, 390, 398, 414, 467, 480, 504, 534, 539, 543, 567, 592, 619, 626, 654, 709, 735, 756, 766, 770, 778, 787, 806, 812, 874, 943, 973, ... | A162862 |
13 | 2, 3, 5, 7, 34, 37, 43, 59, 72, 94, 98, 110, 133, 149, 151, 159, 190, 207, 219, 221, 251, 260, 264, 267, 282, 286, 291, 319, 355, 363, 373, 382, 397, 398, 402, 406, 408, 412, 436, 442, 486, 489, 507, 542, 544, 552, 553, 582, 585, 592, 603, 610, 614, 634, 643, 645, 689, 708, 720, 730, 744, 769, 772, 806, 851, 853, 862, 882, 912, 928, 930, 952, 968, 993, ... | A217070 |
17 | 2, 11, 20, 21, 28, 31, 55, 57, 62, 84, 87, 97, 107, 109, 129, 147, 149, 157, 160, 170, 181, 189, 191, 207, 241, 247, 251, 274, 295, 297, 315, 327, 335, 349, 351, 355, 364, 365, 368, 379, 383, 410, 419, 423, 431, 436, 438, 466, 472, 506, 513, 527, 557, 571, 597, 599, 614, 637, 653, 656, 688, 708, 709, 720, 740, 762, 835, 836, 874, 974, 976, 980, 982, 986, ... | A217071 |
19 | 2, 10, 11, 12, 14, 19, 24, 40, 45, 46, 48, 65, 66, 67, 75, 85, 90, 103, 105, 117, 119, 137, 147, 164, 167, 179, 181, 205, 220, 235, 242, 253, 254, 263, 268, 277, 303, 315, 332, 337, 366, 369, 370, 389, 399, 404, 424, 431, 446, 449, 480, 481, 506, 509, 521, 523, 531, 547, 567, 573, 581, 622, 646, 651, 673, 736, 768, 787, 797, 807, 810, 811, 817, 840, 846, 857, 867, 869, 870, 888, 899, 902, 971, 988, 990, 992, ... | A217072 |
23 | 10, 40, 82, 113, 127, 141, 170, 257, 275, 287, 295, 315, 344, 373, 442, 468, 609, 634, 646, 663, 671, 710, 819, 834, 857, 884, 894, 904, 992, 997, ... | A217073 |
29 | 6, 40, 65, 70, 114, 151, 221, 229, 268, 283, 398, 451, 460, 519, 554, 587, 627, 628, 659, 687, 699, 859, 884, 915, 943, 974, 986, ... | A217074 |
31 | 2, 14, 19, 31, 44, 53, 71, 82, 117, 127, 131, 145, 177, 197, 203, 241, 258, 261, 276, 283, 293, 320, 325, 379, 387, 388, 406, 413, 461, 462, 470, 486, 491, 534, 549, 569, 582, 612, 618, 639, 696, 706, 723, 746, 765, 767, 774, 796, 802, 877, 878, 903, 923, 981, 991, 998, ... | A217075 |
37 | 61, 77, 94, 97, 99, 113, 126, 130, 134, 147, 161, 172, 187, 202, 208, 246, 261, 273, 285, 302, 320, 432, 444, 503, 523, 525, 563, 666, 680, 709, 740, 757, 787, 902, 962, 964, 969, ... | A217076 |
41 | 14, 53, 55, 58, 71, 76, 82, 211, 248, 271, 296, 316, 430, 433, 439, 472, 545, 553, 555, 596, 663, 677, 682, 746, 814, 832, 885, 926, 947, 959, ... | A217077 |
43 | 15, 21, 26, 86, 89, 114, 123, 163, 180, 310, 332, 377, 409, 438, 448, 457, 477, 526, 534, 556, 586, 612, 653, 665, 690, 692, 709, 760, 783, 803, 821, 848, 877, 899, 909, 942, 981, ... | A217078 |
47 | 5, 17, 19, 55, 62, 75, 89, 98, 99, 132, 172, 186, 197, 220, 268, 278, 279, 288, 439, 443, 496, 579, 583, 587, 742, 777, 825, 911, 966, ... | A217079 |
53 | 24, 45, 60, 165, 235, 272, 285, 298, 307, 381, 416, 429, 623, 799, 858, 924, 929, 936, ... | A217080 |
59 | 19, 70, 102, 116, 126, 188, 209, 257, 294, 359, 451, 461, 468, 470, 638, 653, 710, 762, 766, 781, 824, 901, 939, 964, 995, ... | A217081 |
61 | 2, 19, 69, 88, 138, 155, 205, 234, 336, 420, 425, 455, 470, 525, 555, 561, 608, 626, 667, 674, 766, 779, 846, 851, 937, 971, 998, ... | A217082 |
67 | 46, 122, 238, 304, 314, 315, 328, 332, 346, 372, 382, 426, 440, 491, 496, 510, 524, 528, 566, 638, 733, 826, ... | A217083 |
71 | 3, 6, 17, 24, 37, 89, 132, 374, 387, 402, 421, 435, 453, 464, 490, 516, 708, 736, 919, 947, 981, ... | A217084 |
73 | 11, 15, 75, 114, 195, 215, 295, 335, 378, 559, 566, 650, 660, 832, 871, 904, 966, ... | A217085 |
79 | 22, 112, 140, 158, 170, 254, 271, 330, 334, 354, 390, 483, 528, 560, 565, 714, 850, 888, 924, 929, 933, 935, 970, ... | A217086 |
83 | 41, 146, 386, 593, 667, 688, 906, 927, 930, ... | A217087 |
89 | 2, 114, 159, 190, 234, 251, 436, 616, 834, 878, ... | A217088 |
97 | 12, 90, 104, 234, 271, 339, 420, 421, 428, 429, 464, 805, 909, 934, ... | A217089 |
101 | 22, 78, 164, 302, 332, 359, 387, 428, 456, 564, 617, 697, 703, 704, 785, 831, 979, ... | |
103 | 3, 52, 345, 392, 421, 472, 584, 617, 633, 761, 767, 775, 785, 839, ... | |
107 | 2, 19, 61, 68, 112, 157, 219, 349, 677, 692, 700, 809, 823, 867, 999, ... | |
109 | 12, 57, 72, 79, 89, 129, 158, 165, 239, 240, 260, 277, 313, 342, 421, 445, 577, 945, ... | |
113 | 86, 233, 266, 299, 334, 492, 592, 641, 656, 719, 946, ... | |
127 | 2, 5, 6, 47, 50, 126, 151, 226, 250, 401, 427, 473, 477, 486, 497, 585, 624, 644, 678, 685, 687, 758, 896, 897, 936, ... | |
131 | 7, 493, 567, 591, 593, 613, 764, 883, 899, 919, 953, ... | |
137 | 13, 166, 213, 355, 586, 669, 707, 768, 833, ... | |
139 | 11, 50, 221, 415, 521, 577, 580, 668, 717, 720, 738, 902, ... | |
149 | 5, 7, 68, 79, 106, 260, 319, 502, 550, 779, 855, ... | |
151 | 29, 55, 57, 160, 176, 222, 255, 364, 427, 439, 642, 660, 697, 863, ... | |
157 | 56, 71, 76, 181, 190, 317, 338, 413, 426, 609, 694, 794, 797, 960, ... | |
163 | 30, 62, 118, 139, 147, 291, 456, 755, 834, 888, 902, 924, ... | |
167 | 44, 45, 127, 175, 182, 403, 449, 453, 476, 571, 582, 700, 749, 764, 929, 957, ... | |
173 | 60, 62, 139, 141, 303, 313, 368, 425, 542, 663, ... | |
179 | 304, 478, 586, 942, 952, 975, ... | |
181 | 5, 37, 171, 427, 509, 571, 618, 665, 671, 786, ... | |
191 | 74, 214, 416, 477, 595, 664, 699, 712, 743, 924, ... | |
193 | 118, 301, 486, 554, 637, 673, 736, ... | |
197 | 33, 236, 248, 262, 335, 363, 388, 593, 763, 813, ... | |
199 | 156, 362, 383, 401, 442, 630, 645, 689, 740, 921, 936, 944, 983, 988, ... | |
211 | 46, 57, 354, 478, 539, 581, 653, 829, 835, 977, ... | |
223 | 183, 186, 219, 221, 661, 749, 905, 914, ... | |
227 | 72, 136, 235, 240, 251, 322, 350, 500, 523, 556, 577, 671, 688, 743, 967, ... | |
229 | 606, 725, 754, 858, 950, ... | |
233 | 602, ... | |
239 | 223, 260, 367, 474, 564, 862, ... | |
241 | 115, 163, 223, 265, 270, 330, 689, 849, ... | |
251 | 37, 246, 267, 618, 933, ... | |
257 | 52, 78, 435, 459, 658, 709, ... | |
263 | 104, 131, 161, 476, 494, 563, 735, 842, 909, 987, ... | |
269 | 41, 48, 294, 493, 520, 812, 843, ... | |
271 | 6, 21, 186, 201, 222, 240, 586, 622, 624, ... | |
277 | 338, 473, 637, 940, 941, 978, ... | |
281 | 217, 446, 606, 618, 790, 864, ... | |
283 | 13, 197, 254, 288, 323, 374, 404, 943, ... | |
293 | 136, 388, 471, ... |
List of repunit primes base
Smallest prime such that is prime are (start with , 0 if no such exists)
- 3, 3, 0, 3, 3, 5, 3, 0, 19, 17, 3, 5, 3, 3, 0, 3, 25667, 19, 3, 3, 5, 5, 3, 0, 7, 3, 5, 5, 5, 7, 0, 3, 13, 313, 0, 13, 3, 349, 5, 3, 1319, 5, 5, 19, 7, 127, 19, 0, 3, 4229, 103, 11, 3, 17, 7, 3, 41, 3, 7, 7, 3, 5, 0, 19, 3, 19, 5, 3, 29, 3, 7, 5, 5, 3, 41, 3, 3, 5, 3, 0, 23, 5, 17, 5, 11, 7, 61, 3, 3, 4421, 439, 7, 5, 7, 3343, 17, 13, 3, 0, ... (sequence A128164 in the OEIS)
Smallest prime such that is prime are (start with , 0 if no such exists, question mark if this term is currently unknown)
- 3, 3, 3, 5, 3, 3, 0, 3, 5, 5, 5, 3, 7, 3, 3, 7, 3, 17, 5, 3, 3, 11, 7, 3, 11, 0, 3, 7, 139, 109, 0, 5, 3, 11, 31, 5, 5, 3, 53, 17, 3, 5, 7, 103, 7, 5, 5, 7, 1153, 3, 7, 21943, 7, 3, 37, 53, 3, 17, 3, 7, 11, 3, 0, 19, 7, 3, 757, 11, 3, 5, 3, 7, 13, 5, 3, 37, 3, 3, 5, 3, 293, 19, 7, 167, 7, 7, 709, 13, 3, 3, 37, 89, 71, 43, 37, ?, 19, 7, 3, ... (sequence A084742 in the OEIS)
numbers such that is prime (some large terms are only corresponding to probable primes, these are checked up to 100000) | OEIS sequence | |
−50 | 1153, 26903, 56597, ... | A309413 |
−49 | 7, 19, 37, 83, 1481, 12527, 20149, ... | A237052 |
−48 | 2*, 5, 17, 131, 84589, ... | A236530 |
−47 | 5, 19, 23, 79, 1783, 7681, ... | A236167 |
−46 | 7, 23, 59, 71, 107, 223, 331, 2207, 6841, 94841, ... | A235683 |
−45 | 103, 157, 37159, ... | A309412 |
−44 | 2*, 7, 41233, ... | A309411 |
−43 | 5, 7, 19, 251, 277, 383, 503, 3019, 4517, 9967, 29573, ... | A231865 |
−42 | 2*, 3, 709, 1637, 17911, 127609, 172663, ... | A231604 |
−41 | 17, 691, 113749, ... | A309410 |
−40 | 53, 67, 1217, 5867, 6143, 11681, 29959, ... | A229663 |
−39 | 3, 13, 149, 15377, ... | A230036 |
−38 | 2*, 5, 167, 1063, 1597, 2749, 3373, 13691, 83891, 131591, ... | A229524 |
−37 | 5, 7, 2707, 163193, ... | A309409 |
−36 | 31, 191, 257, 367, 3061, 110503, ... | A229145 |
−35 | 11, 13, 79, 127, 503, 617, 709, 857, 1499, 3823, 135623, ... | A185240 |
−34 | 3, 294277, ... | |
−33 | 5, 67, 157, 12211, ... | A185230 |
−32 | 2* (no others) | |
−31 | 109, 461, 1061, 50777, ... | A126856 |
−30 | 2*, 139, 173, 547, 829, 2087, 2719, 3109, 10159, 56543, 80599, ... | A071382 |
−29 | 7, 112153, 151153, ... | A291906 |
−28 | 3, 19, 373, 419, 491, 1031, 83497, ... | A071381 |
−27 | (none) | |
−26 | 11, 109, 227, 277, 347, 857, 2297, 9043, ... | A071380 |
−25 | 3, 7, 23, 29, 59, 1249, 1709, 1823, 1931, 3433, 8863, 43201, 78707, ... | A057191 |
−24 | 2*, 7, 11, 19, 2207, 2477, 4951, ... | A057190 |
−23 | 11, 13, 67, 109, 331, 587, 24071, 29881, 44053, ... | A057189 |
−22 | 3, 5, 13, 43, 79, 101, 107, 227, 353, 7393, 50287, ... | A057188 |
−21 | 3, 5, 7, 13, 37, 347, 17597, 59183, 80761, 210599, 394579, ... | A057187 |
−20 | 2*, 5, 79, 89, 709, 797, 1163, 6971, 140053, 177967, 393257, ... | A057186 |
−19 | 17, 37, 157, 163, 631, 7351, 26183, 30713, 41201, 77951, 476929, ... | A057185 |
−18 | 2*, 3, 7, 23, 73, 733, 941, 1097, 1933, 4651, 481147, ... | A057184 |
−17 | 7, 17, 23, 47, 967, 6653, 8297, 41221, 113621, 233689, 348259, ... | A057183 |
−16 | 3, 5, 7, 23, 37, 89, 149, 173, 251, 307, 317, 30197, 1025393, ... | A057182 |
−15 | 3, 7, 29, 1091, 2423, 54449, 67489, 551927, ... | A057181 |
−14 | 2*, 7, 53, 503, 1229, 22637, 1091401, ... | A057180 |
−13 | 3, 11, 17, 19, 919, 1151, 2791, 9323, 56333, 1199467, ... | A057179 |
−12 | 2*, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, 495953, ... | A057178 |
−11 | 5, 7, 179, 229, 439, 557, 6113, 223999, 327001, ... | A057177 |
−10 | 5, 7, 19, 31, 53, 67, 293, 641, 2137, 3011, 268207, ... | A001562 |
−9 | 3, 59, 223, 547, 773, 1009, 1823, 3803, 49223, 193247, 703393, ... | A057175 |
−8 | 2* (no others) | |
−7 | 3, 17, 23, 29, 47, 61, 1619, 18251, 106187, 201653, 1178033, ... | A057173 |
−6 | 2*, 3, 11, 31, 43, 47, 59, 107, 811, 2819, 4817, 9601, 33581, 38447, 41341, 131891, 196337, 1313371, ... | A057172 |
−5 | 5, 67, 101, 103, 229, 347, 4013, 23297, 30133, 177337, 193939, 266863, 277183, 335429, 1856147, ... | A057171 |
−4 | 2*, 3 (no others) | |
−3 | 2*, 3, 5, 7, 13, 23, 43, 281, 359, 487, 577, 1579, 1663, 1741, 3191, 9209, 11257, 12743, 13093, 17027, 26633, 104243, 134227, 152287, 700897, 1205459, ... | A007658 |
−2 | 3, 4*, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399, ..., 13347311, 13372531, ... | A000978 |
2 | 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, ..., 57885161, ..., 74207281, ..., 77232917, ... | A000043 |
3 | 3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, 2215303, ... | A028491 |
4 | 2 (no others) | |
5 | 3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, 13241, 13873, 16519, 201359, 396413, 1888279, ... | A004061 |
6 | 2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, 19889, 79987, 608099, ... | A004062 |
7 | 5, 13, 131, 149, 1699, 14221, 35201, 126037, 371669, 1264699, ... | A004063 |
8 | 3 (no others) | |
9 | (none) | |
10 | 2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ... | A004023 |
11 | 17, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, 20161, 293831, ... | A005808 |
12 | 2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, 14951, 37573, 46889, 769543, ... | A004064 |
13 | 5, 7, 137, 283, 883, 991, 1021, 1193, 3671, 18743, 31751, 101089, ... | A016054 |
14 | 3, 7, 19, 31, 41, 2687, 19697, 59693, 67421, 441697, ... | A006032 |
15 | 3, 43, 73, 487, 2579, 8741, 37441, 89009, 505117, 639833, ... | A006033 |
16 | 2 (no others) | |
17 | 3, 5, 7, 11, 47, 71, 419, 4799, 35149, 54919, 74509, ... | A006034 |
18 | 2, 25667, 28807, 142031, 157051, 180181, 414269, ... | A133857 |
19 | 19, 31, 47, 59, 61, 107, 337, 1061, 9511, 22051, 209359, ... | A006035 |
20 | 3, 11, 17, 1487, 31013, 48859, 61403, 472709, ... | A127995 |
21 | 3, 11, 17, 43, 271, 156217, 328129, ... | A127996 |
22 | 2, 5, 79, 101, 359, 857, 4463, 9029, 27823, ... | A127997 |
23 | 5, 3181, 61441, 91943, 121949, ... | A204940 |
24 | 3, 5, 19, 53, 71, 653, 661, 10343, 49307, 115597, 152783, ... | A127998 |
25 | (none) | |
26 | 7, 43, 347, 12421, 12473, 26717, ... | A127999 |
27 | 3 (no others) | |
28 | 2, 5, 17, 457, 1423, 115877, ... | A128000 |
29 | 5, 151, 3719, 49211, 77237, ... | A181979 |
30 | 2, 5, 11, 163, 569, 1789, 8447, 72871, 78857, 82883, ... | A098438 |
31 | 7, 17, 31, 5581, 9973, 101111, ... | A128002 |
32 | (none) | |
33 | 3, 197, 3581, 6871, 183661, ... | A209120 |
34 | 13, 1493, 5851, 6379, 125101, ... | A185073 |
35 | 313, 1297, ... | |
36 | 2 (no others) | |
37 | 13, 71, 181, 251, 463, 521, 7321, 36473, 48157, 87421, 168527, ... | A128003 |
38 | 3, 7, 401, 449, 109037, ... | A128004 |
39 | 349, 631, 4493, 16633, 36341, ... | A181987 |
40 | 2, 5, 7, 19, 23, 29, 541, 751, 1277, ... | A128005 |
41 | 3, 83, 269, 409, 1759, 11731, ... | A239637 |
42 | 2, 1319, ... | |
43 | 5, 13, 6277, 26777, 27299, 40031, 44773, ... | A240765 |
44 | 5, 31, 167, 100511, ... | A294722 |
45 | 19, 53, 167, 3319, 11257, 34351, ... | A242797 |
46 | 2, 7, 19, 67, 211, 433, 2437, 2719, 19531, ... | A243279 |
47 | 127, 18013, 39623, ... | A267375 |
48 | 19, 269, 349, 383, 1303, 15031, ... | A245237 |
49 | (none) | |
50 | 3, 5, 127, 139, 347, 661, 2203, 6521, ... | A245442 |
* Repunits with negative base and even n are negative. If their absolute value is prime then they are included above and marked with an asterisk. They are not included in the corresponding OEIS sequences.
Algebra factorization of generalized repunit numbers
If b is a perfect power (can be written as mn, with m, n integers, n > 1) differs from 1, then there is at most one repunit in base-b. If n is a prime power (can be written as pr, with p prime, r integer, p, r >0), then all repunit in base-b are not prime aside from Rp and R2. Rp can be either prime or composite, the former examples, b = −216, −128, 4, 8, 16, 27, 36, 100, 128, 256, etc., the latter examples, b = −243, −125, −64, −32, −27, −8, 9, 25, 32, 49, 81, 121, 125, 144, 169, 196, 216, 225, 243, 289, etc., and R2 can be prime (when p differs from 2) only if b is negative, a power of −2, for example, b = −8, −32, −128, −8192, etc., in fact, the R2 can also be composite, for example, b = −512, −2048, −32768, etc. If n is not a prime power, then no base-b repunit prime exists, for example, b = 64, 729 (with n = 6), b = 1024 (with n = 10), and b = −1 or 0 (with n any natural number). Another special situation is b = −4k4, with k positive integer, which has the aurifeuillean factorization, for example, b = −4 (with k = 1, then R2 and R3 are primes), and b = −64, −324, −1024, −2500, −5184, ... (with k = 2, 3, 4, 5, 6, ...), then no base-b repunit prime exists. It is also conjectured that when b is neither a perfect power nor −4k4 with k positive integer, then there are infinity many base-b repunit primes.
The generalized repunit conjecture
A conjecture related to the generalized repunit primes:[11][12] (the conjecture predicts where is the next generalized Mersenne prime, if the conjecture is true, then there are infinitely many repunit primes for all bases )
For any integer , which satisfies the conditions:
- .
- is not a perfect power. (since when is a perfect th power, it can be shown that there is at most one value such that is prime, and this value is itself or a root of )
- is not in the form . (if so, then the number has aurifeuillean factorization)
has generalized repunit primes of the form
for prime , the prime numbers will be distributed near the best fit line
where limit ,
and there are about
base-b repunit primes less than N.
- is the base of natural logarithm.
- is Euler–Mascheroni constant.
- is the logarithm in base
- is the th generalized repunit prime in baseb (with prime p)
- is a data fit constant which varies with .
- if , if .
- is the largest natural number such that is a th power.
We also have the following 3 properties:
- The number of prime numbers of the form (with prime ) less than or equal to is about .
- The expected number of prime numbers of the form with prime between and is about .
- The probability that number of the form is prime (for prime ) is about .
History
Although they were not then known by that name, repunits in base-10 were studied by many mathematicians during the nineteenth century in an effort to work out and predict the cyclic patterns of repeating decimals.[13]
It was found very early on that for any prime p greater than 5, the period of the decimal expansion of 1/p is equal to the length of the smallest repunit number that is divisible by p. Tables of the period of reciprocal of primes up to 60,000 had been published by 1860 and permitted the factorization by such mathematicians as Reuschle of all repunits up to R16 and many larger ones. By 1880, even R17 to R36 had been factored[13] and it is curious that, though Édouard Lucas showed no prime below three million had period nineteen, there was no attempt to test any repunit for primality until early in the twentieth century. The American mathematician Oscar Hoppe proved R19 to be prime in 1916[14] and Lehmer and Kraitchik independently found R23 to be prime in 1929.
Further advances in the study of repunits did not occur until the 1960s, when computers allowed many new factors of repunits to be found and the gaps in earlier tables of prime periods corrected. R317 was found to be a probable prime circa 1966 and was proved prime eleven years later, when R1031 was shown to be the only further possible prime repunit with fewer than ten thousand digits. It was proven prime in 1986, but searches for further prime repunits in the following decade consistently failed. However, there was a major side-development in the field of generalized repunits, which produced a large number of new primes and probable primes.
Since 1999, four further probably prime repunits have been found, but it is unlikely that any of them will be proven prime in the foreseeable future because of their huge size.
The Cunningham project endeavours to document the integer factorizations of (among other numbers) the repunits to base 2, 3, 5, 6, 7, 10, 11, and 12.
Demlo numbers
D. R. Kaprekar has defined Demlo numbers as concatenation of a left, middle and right part, where the left and right part must be of the same length (up to a possible leading zero to the left) and must add up to a repdigit number, and the middle part may contain any additional number of this repeated digit.[15] They are named after Demlo railway station 30 miles from Bombay on the then G.I.P. Railway, where Kaprekar started investigating them. He calls Wonderful Demlo numbers those of the form 1, 121, 12321, 1234321, ..., 12345678987654321. The fact that these are the squares of the repunits has led some authors to call Demlo numbers the infinite sequence of these[16], 1, 121, 12321, ..., 12345678987654321, 1234567900987654321, 123456790120987654321, ..., (sequence A002477 in the OEIS), although one can check these are not Demlo numbers for p = 10, 19, 28, ...
See also
- All one polynomial - Another generalization
- Goormaghtigh conjecture
- Repeating decimal
- Repdigit
- Wagstaff prime - can be thought of as repunit primes with negative base
Footnotes
Notes
- Albert H. Beiler coined the term “repunit number” as follows:
A number which consists of a repeated of a single digit is sometimes called a monodigit number, and for convenience the author has used the term “repunit number” (repeated unit) to represent monodigit numbers consisting solely of the digit 1.[1]
References
- Beiler 2013, pp. 83
- For more information, see Factorization of repunit numbers.
- Harvey Dubner, New Repunit R(109297)
- Harvey Dubner, Repunit search limit
- Maksym Voznyy, New PRP Repunit R(270343)
- Chris Caldwell, "The Prime Glossary: repunit" at The Prime Pages.
- Repunit primes in base −50 to 50
- Repunit primes in base 2 to 160
- Repunit primes in base −160 to −2
- Repunit primes in base −200 to −2
- Deriving the Wagstaff Mersenne Conjecture
- Generalized Repunit Conjecture
- Dickson & Cresse 1999, pp. 164–167
- Francis 1988, pp. 240–246
- Kaprekar 1938 , Gunjikar and Kaprekar 1939
- Weisstein, Eric W. "Demlo Number". MathWorld.
References
- Beiler, Albert H. (2013) [1964], Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover Recreational Math (2nd Revised ed.), New York: Dover Publications, ISBN 978-0-486-21096-4
- Dickson, Leonard Eugene; Cresse, G.H. (1999-04-24), History of the Theory of Numbers, AMS Chelsea Publishing, Volume I (2nd Reprinted ed.), Providence, Rhode Island: American Mathematical Society, ISBN 978-0-8218-1934-0
- Francis, Richard L. (1988), "Mathematical Haystacks: Another Look at Repunit Numbers", The College Mathematics Journal, 19 (3): 240–246
- Gunjikar, K. R.; Kaprekar, D. R. (1939), "Theory of Demlo numbers" (PDF), Journal of the University of Bombay, VIII (3): 3–9
- Kaprekar, D. R. (1938), "On Wonderful Demlo numbers", The Mathematics Student, 6: 68
- Kaprekar, D. R. (1938), "Demlo numbers", J. Phys. Sci. Univ. Bombay, VII (3)
- Kaprekar, D. R. (1948), Demlo numbers, Devlali, India: Khareswada
- Ribenboim, Paulo (1996-02-02), The New Book of Prime Number Records, Computers and Medicine (3rd ed.), New York: Springer, ISBN 978-0-387-94457-9
- Yates, Samuel (1982), Repunits and repetends, FL: Delray Beach, ISBN 978-0-9608652-0-8
External links
- Weisstein, Eric W. "Repunit". MathWorld.
- The main tables of the Cunningham project.
- Repunit at The Prime Pages by Chris Caldwell.
- Repunits and their prime factors at World!Of Numbers.
- Prime generalized repunits of at least 1000 decimal digits by Andy Steward
- Repunit Primes Project Giovanni Di Maria's repunit primes page.
- Smallest odd prime p such that (b^p-1)/(b-1) and (b^p+1)/(b+1) is prime for bases 2<=b<=1024
- Factorization of repunit numbers
- Generalized repunit primes in base -50 to 50