Sexy prime
Sexy primes are prime numbers that differ from each other by 6. For example, the numbers 5 and 11 are both sexy primes, because 11 − 5 = 6 .
The term "sexy prime" is a pun stemming from the Latin word for six: sex.
If p + 2 or p + 4 (where p is the lower prime) is also prime, then the sexy prime is part of a prime triplet.
Primorial n# notation
As used in this article, n# stands for the product 2 · 3 · 5 · 7 · … of all the primes ≤ n.
Types of groupings
Sexy prime pairs
The sexy primes (sequences OEIS: A023201 and OEIS: A046117 in OEIS) below 500 are:
- (5,11), (7,13), (11,17), (13,19), (17,23), (23,29), (31,37), (37,43), (41,47), (47,53), (53,59), (61,67), (67,73), (73,79), (83,89), (97,103), (101,107), (103,109), (107,113), (131,137), (151,157), (157,163), (167,173), (173,179), (191,197), (193,199), (223,229), (227,233), (233,239), (251,257), (257,263), (263,269), (271,277), (277,283), (307,313), (311,317), (331,337), (347,353), (353,359), (367,373), (373,379), (383,389), (433,439), (443,449), (457,463), (461,467).
As of October 2019, the largest-known pair of sexy primes was found by P. Kaiser and has 50,539 digits. The primes are:
- p = (520461 × 255931+1) × (98569639289 × (520461 × 255931-1)2-3)-1
- p+6 = (520461 × 255931+1) × (98569639289 × (520461 × 255931-1)2-3)+5[1]
Sexy prime triplets
Sexy primes can be extended to larger constellations. Triplets of primes (p, p+6, p+12) such that p+18 is composite are called sexy prime triplets. Those below 1,000 are (OEIS: A046118, OEIS: A046119, OEIS: A046120):
- (7,13,19), (17,23,29), (31,37,43), (47,53,59), (67,73,79), (97,103,109), (101,107,113), (151,157,163), (167,173,179), (227,233,239), (257,263,269), (271,277,283), (347,353,359), (367,373,379), (557,563,569), (587,593,599), (607,613,619), (647,653,659), (727,733,739), (941,947,953), (971,977,983).
In May 2019, Peter Kaiser set a record for the largest-known sexy prime triplet with 6,031 digits:
- p = 10409207693×220000−1.[2]
Gerd Lamprecht improved the record to 6,116 digits in August 2019:
- p = 20730011943×14221#+344231.[3]
Ken Davis further improved the record with a 6,180 digit Brillhart-Lehmer-Selfridge provable triplet in October 2019:
- p = (72865897*809857*4801#*(809857*4801#+1)+210)*(809857*4801#-1)/35+1[4]
Norman Luhn & Gerd Lamprecht improved the record to 6,701 digits in October 2019:
- p = 22582235875×222224+1.[5]
Gerd Lamprecht & Norman Luhn improved the record to 10,602 digits in December 2019:
- p = 2683143625525x235176+1.[6]
Sexy prime quadruplets
Sexy prime quadruplets (p, p+6, p+12, p+18) can only begin with primes ending in a 1 in their decimal representation (except for the quadruplet with p = 5). The sexy prime quadruplets below 1000 are (OEIS: A023271, OEIS: A046122, OEIS: A046123, OEIS: A046124):
- (5,11,17,23), (11,17,23,29), (41,47,53,59), (61,67,73,79), (251,257,263,269), (601,607,613,619), (641,647,653,659).
In November 2005 the largest-known sexy prime quadruplet, found by Jens Kruse Andersen had 1,002 digits:
- p = 411784973 · 2347# + 3301.[7]
In September 2010 Ken Davis announced a 1,004 digit quadruplet with p = 23333 + 1582534968299.[8]
In May 2019 Marek Hubal announced a 1,138 digit quadruplet with p = 1567237911 × 2677# + 3301.[9][10]
In June 2019 Peter Kaiser announced a 1,534 digit quadruplet with p = 19299420002127 × 25050 + 17233.[11]
In October 2019 Gerd Lamprecht and Norman Luhn announced a 3,025 digit quadruplet with p = 121152729080 × 7019#/1729 + 1.[12]
Sexy prime quintuplets
In an arithmetic progression of five terms with common difference 6, one of the terms must be divisible by 5, because 5 and 6 are relatively prime. Thus, the only sexy prime quintuplet is (5,11,17,23,29); no longer sequence of sexy primes is possible.
See also
- Cousin prime (two primes that differ by 4)
- Prime k-tuple
- Twin prime (two primes that differ by 2)
References
- Batalov, S. "Let's find some large sexy prime pair[s]". mersenneforum.org. Retrieved 3 October 2019.
- Kaiser, Peter (May 2019). "sexy prime triplet". Mersenne forum. Retrieved 13 May 2019.
- Andersen, Jens Kruse. "The largest known CPAP's". primerecords.dk. Retrieved 19 August 2019.
- Davis, Ken. "Brillhart-Lehmer-Selfridge provable triplet Oct 2019". primenumbers yahoo group. Retrieved 2 October 2019.
- Andersen, Jens Kruse. "The largest known CPAP's". primerecords.dk. Retrieved 13 October 2019.
- Lamprecht, Gerd; Luhn, Norman. "Gerd Lamprecht & Norman Luhn, Dec 2019". Mersenne forum.
- Andersen, Jens K. (November 2005). "Gigantic sexy and cousin primes". primenumbers yahoo group. Retrieved 27 January 2009.
- Davis, Ken (September 2010). "1004 sexy prime quadruplet". primenumbers yahoo group. Retrieved 2 September 2010.
- Hubal, Marek (May 2019). "CPAP's sexy prime". primenumbers yahoo group. Retrieved 10 May 2019.
- Andersen, Jens Kruse (May 2019). "Re: CPAP's sexy prime". primenumbers yahoo group. Retrieved 19 September 2019.
- Kaiser, Peter (June 2019). "Let's find some large sexy prime pair (and, perhaps, a triplet)". Mersenne forum. Retrieved 18 August 2019.
- Lamprecht, Gerd; Luhn, Norman (October 2019). "CPAP's sexy prime". primenumbers yahoo group. Retrieved 13 October 2019.
- Weisstein, Eric W. "Sexy Primes". MathWorld. Retrieved on 2007-02-28 (requires composite p+18 in a sexy prime triplet, but no other similar restrictions)
External links
- Grime, James. Brady Haran (ed.). "Sexy Primes (and the only sexy prime quintuplet)". Numberphile.