Integer sequence prime

In mathematics, an integer sequence prime is a prime number found as a member of an integer sequence. For example, the 8th Delannoy number, 265729, is prime. A challenge in empirical mathematics is to identify large prime values in rapidly growing sequences.

A common subclass of integer sequence primes are constant primes, formed by taking a constant real number and considering prefixes of its decimal representation, omitting the decimal point. For example, the first 6 decimal digits of the constant π, approximately 3.14159265, form the prime number 314159, which is therefore known as a pi-prime (sequence A005042 in the OEIS). Similarly, a constant prime based on e is called an e-prime.

Other examples of integer sequence primes include:

  • Cullen prime a prime that appears in the sequence of Cullen numbers
  • Factorial prime a prime that appears in either of the sequences or
  • Fermat prime a prime that appears in the sequence of Fermat numbers
  • Fibonacci prime a prime that appears in the sequence of Fibonacci numbers.
  • Lucas prime a prime that appears in the Lucas numbers.
  • Mersenne prime a prime that appears in the sequence of Mersenne numbers
  • Primorial prime a prime that appears in either of the sequences or
  • Pythagorean prime a prime that appears in the sequence
  • Woodall prime a prime that appears in the sequence of Woodall numbers

The On-Line Encyclopedia of Integer Sequences includes many sequences corresponding to the prime subsequences of well-known sequences, for example A001605 for Fibonacci numbers that are prime.

References

  • Weisstein, Eric W. "Integer Sequence Primes". MathWorld.
  • Weisstein, Eric W. "Constant Primes". MathWorld.
  • Weisstein, Eric W. "Pi-Prime". MathWorld.
  • Weisstein, Eric W. "e-Prime". MathWorld.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.