37 (number)
37 (thirty-seven) is the natural number following 36 and preceding 38.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | thirty-seven | |||
Ordinal | 37th (thirty-seventh) | |||
Factorization | prime | |||
Prime | 12th | |||
Divisors | 1, 37 | |||
Greek numeral | ΛΖ´ | |||
Roman numeral | XXXVII | |||
Binary | 1001012 | |||
Ternary | 11013 | |||
Quaternary | 2114 | |||
Quinary | 1225 | |||
Senary | 1016 | |||
Octal | 458 | |||
Duodecimal | 3112 | |||
Hexadecimal | 2516 | |||
Vigesimal | 1H20 | |||
Base 36 | 1136 |
In mathematics
- Thirty-seven is the 12th prime number, a permutable prime with 73 (which is the 21st prime number). 37 is the fifth lucky prime,[1] the first irregular prime,[2] the third unique prime[3] and the third cuban prime of the form[4]
- 37 is the smallest prime that is not also a supersingular prime.
- It is a centered hexagonal number[5] and a star number.[6]
- 37 and 38 are the first pair of consecutive positive integers not divisible by any of their digits.
- Every positive integer is the sum of at most 37 fifth powers (see Waring's problem).
- 37 appears in the Padovan sequence, preceded by the terms 16, 21, and 28 (it is the sum of the first two of these).[7]
- Since the greatest prime factor of 372 + 1 = 1370 is 137, which is substantially more than 37 twice, 37 is a Størmer number.[8]
- 37*(1+1+1) = 111
- 37*(2+2+2) = 222
- 37*(3+3+3) = 333
- 37*(4+4+4) = 444
- 37*(5+5+5) = 555
- 37*(6+6+6) = 666
- 37*(7+7+7) = 777
- 37*(8+8+8) = 888
- 37*(9+9+9) = 999
In science
- The atomic number of rubidium
- The normal human body temperature in degrees Celsius
Astronomy
- Messier object M37, a magnitude 6.0 open cluster in the constellation Auriga
- The New General Catalogue object NGC 37, a spiral galaxy in the constellation Phoenix
- Kepler-37b is the smallest known planet.
- NGC 2169 is known as the 37 Cluster, due to its resemblance of the numerals.
In sports
José María López used this number during his successful years in the World Touring Car Championship from 2014 until 2016. He still uses this number in Formula E since joining in 2016-17 season with DS Virgin Racing.
In other fields
Thirty-seven is:
- The number of the French department Indre-et-Loire[9]
- The number of slots in European Roulette (numbered 0 to 36, the 00 is not used in European roulette as it is in American roulette)
- The number of Great Nats traditionally worshiped in Burma
- The RSA public exponent used by PuTTY
- +37 was the international dialing code of the German Democratic Republic (aka East Germany). Today the +37 prefix is shared by Lithuania (+370), Latvia (+371), Estonia (+372), Moldova (+373), Armenia (+374), Belarus (+375), Andorra (+376), Monaco (+377), San Marino (+378) and Vatican City (+379).
gollark: ```<html><head><title>500 Internal Server Error</title></head><body><h1>500 Internal Server Error</h1>Server got itself in trouble</body></html>⏎ ```
gollark: What are you trying to add to stats!
gollark: No, don't!
gollark: Um, hold on for a second...
gollark: Why?
See also
- List of highways numbered 37
- Number Thirty-Seven, Pennsylvania, unincorporated community in Cambria County, Pennsylvania
- I37 (disambiguation)
References
- "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A000928 : Irregular primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A003215 : Hex (or centered hexagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A003154 : Centered 12-gonal numbers. Also star numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "Sloane's A005528 : Størmer numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-31.
- "INDRE-ET-LOIRE : map, cities and data of the departement of Indre-et-Loire 37". www.map-france.com. Retrieved 2019-12-21.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.