Characterization (materials science)

Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained.[1][2] The scope of the term often differs; some definitions limit the term's use to techniques which study the microscopic structure and properties of materials,[2] while others use the term to refer to any materials analysis process including macroscopic techniques such as mechanical testing, thermal analysis and density calculation.[3] The scale of the structures observed in materials characterization ranges from angstroms, such as in the imaging of individual atoms and chemical bonds, up to centimeters, such as in the imaging of coarse grain structures in metals.

The characterization technique optical microscopy showing the micron scale dendritic microstructure of a bronze alloy.

While many characterization techniques have been practiced for centuries, such as basic optical microscopy, new techniques and methodologies are constantly emerging. In particular the advent of the electron microscope and Secondary ion mass spectrometry in the 20th century has revolutionized the field, allowing the imaging and analysis of structures and compositions on much smaller scales than was previously possible, leading to a huge increase in the level of understanding as to why different materials show different properties and behaviors.[4] More recently, atomic force microscopy has further increased the maximum possible resolution for analysis of certain samples in the last 30 years.[5]

Microscopy

Image of a graphite surface at an atomic level obtained by an STM.
First X-ray diffraction view of Martian soil - CheMin analysis reveals feldspar, pyroxenes, olivine and more (Curiosity rover at "Rocknest", October 17, 2012).[65]

Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons , electrons , ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Some common examples of microscopy instruments include:

Spectroscopy

This group of techniques use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. Some common instruments include:

Optical radiation

X-ray

X-ray powder diffraction of Y2Cu2O5 and Rietveld refinement with two phases, showing 1% of yttrium oxide impurity (red tickers).

Mass spectrometry

Nuclear spectroscopy

Perturbed angular correlation (PAC) probing the local structure by using radioactive nuclei. From the pattern, electric field gradients are obtained that resolve the structure around the radioactive atom, in order to study phase transitions, defects, diffusion.

Other

Macroscopic testing

A huge range of techniques are used to characterize various macroscopic properties of materials, including:

(a) effective refractive indexes and (b) absorption coefficients of the electronic chips.[8]
gollark: ?tag create ????? ??????????????????????¿¿??¿?¿
gollark: ?tag create "tag explanation" tags are basically just snippets of text/images (per-server) which you can easily retrieve
gollark: ?tag create "not found" ++remind 1d you are declared utter bees!
gollark: ?tag create "tag not found" ++apioform
gollark: ?tag create "are you ever wrong" no.

See also

References

  1. Kumar, Sam Zhang, Lin Li, Ashok (2009). Materials characterization techniques. Boca Raton: CRC Press. ISBN 978-1420042948.
  2. Leng, Yang (2009). Materials Characterization: Introduction to Microscopic and Spectroscopic Methods. Wiley. ISBN 978-0-470-82299-9.
  3. Zhang, Sam (2008). Materials Characterization Techniques. CRC Press. ISBN 978-1420042948.
  4. Mathys, Daniel, Zentrum für Mikroskopie, University of Basel: Die Entwicklung der Elektronenmikroskopie vom Bild über die Analyse zum Nanolabor, p. 8
  5. Patent US4724318 - Atomic force microscope and method for imaging surfaces with atomic resolution - Google Patents
  6. "What is X-ray Photon Correlation Spectroscopy (XPCS)?". sector7.xray.aps.anl.gov. Archived from the original on 2018-08-22. Retrieved 2016-10-29.
  7. R. Truell, C. Elbaum and C.B. Chick., Ultrasonic methods in solid state physics New York, Academic Press Inc., 1969.
  8. Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid (2018). "Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging". Optics and Lasers in Engineering. 104: 274–284. Bibcode:2018OptLE.104..274A. doi:10.1016/j.optlaseng.2017.07.007.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.