Desorption/ionization on silicon

Desorption/ionization on silicon (DIOS) is a soft laser desorption method used to generate gas-phase ions for mass spectrometry. It is a matrix-free technique in which a sample is deposited on porous silicon and desorbed from the silicon surface by a laser. DIOS can be used to analyze organic molecules, biomolecules and peptides, and to image cells.

Desorption/Ionization on Silicon
AcronymDIOS
ClassificationMass spectrometry
AnalytesOrganic molecules
Biomolecules
Polymers
Other techniques
RelatedMALDI
Soft laser desorption

Background

Soft laser desorption is a soft ionization technique. It ionizes molecules with minimal fragmentation. This is useful for larger molecules and molecules that fragment easily. The first soft laser desorption technique was Matrix-assisted laser desorption/ionization (MALDI). In MALDI, the analyte is first mixed with a matrix solution. The matrix absorbs energy from the laser pulse and transfers it to the analyte, causing desorption and ionization of the sample. MALDI generates [M+H]+ ions.[1]

DIOS was first reported by Gary Siuzdak, Jing Wei and Jillian M. Buriak in 1999. It was developed as a matrix free alternative to MALDI for smaller molecules. Because MALDI uses a matrix, background ions are introduced due to ionization of the matrix. These ions reduce the usefulness of MALDI for small molecules. In contrast, DIOS uses a porous silicon surface to trap the analyte. This surface is not ionized by the laser, allowing for the analysis of small molecules.[2][3][4]

Applications

DIOS has been shown to detect peptides, natural products, small organic molecules, and polymers with little fragmentation.[5]

DIOS can be used for proteomics. It has been reported as a useful method protein identification. Because it is matrix free, it can be used to identify smaller biomolecules than MALDI. In addition, it can be used to monitor reactions on a single surface through repeated MS analyses. Reaction monitoring can be used to screen enzyme inhibitors.[6]

Atmospheric pressure DIOS was shown to be an effective tool for quantitative analysis of drugs with high proton affinity.[7]

The use of DIOS to image small molecules has been demonstrated. Lin He and coworkers imaged small molecules on mouse liver cells. They also used marker molecules to image HEK 293 cancer cells.[8]

gollark: Yes, but I said "less than twice as much".
gollark: Vaguely relatedly, gaining 1 megadollar would probably cause less than twice as much as a QoL improvement as 0.5 megadollars.
gollark: I mean, you'd have a thousand boxes.
gollark: Except the shipping for #2 would be more annoying.
gollark: I mean, on the extreme end, you probably want 10 gigadollars less than 10 times as much as you want 1 gigadollar, inasmuch as your life would be basically the same.

References

  1. Karas, Michael; Krüger, Ralf (2003). "Ion Formation in MALDI: The Cluster Ionization Mechanism". Chemical Reviews. 103 (2): 427–440. doi:10.1021/cr010376a. ISSN 0009-2665. PMID 12580637.
  2. Lewis, Warren G.; Shen, Zhouxin; Finn, M.G.; Siuzdak, Gary (2003). "Desorption/ionization on silicon (DIOS) mass spectrometry: background and applications". International Journal of Mass Spectrometry. 226 (1): 107–116. Bibcode:2003IJMSp.226..107L. doi:10.1016/S1387-3806(02)00973-9. ISSN 1387-3806.
  3. Buriak, Jillian M.; Wei, Jing; Siuzdak, Gary (1999). "Desorption-ionization mass spectrometry on porous silicon". Nature. 399 (6733): 243–246. Bibcode:1999Natur.399..243W. doi:10.1038/20400. ISSN 0028-0836. PMID 10353246.
  4. Peterson, Dominic S. (2007). "Matrix-free methods for laser desorption/ionization mass spectrometry" (PDF). Mass Spectrometry Reviews. 26 (1): 19–34. Bibcode:2007MSRv...26...19P. doi:10.1002/mas.20104. ISSN 0277-7037. PMID 16967450.
  5. Shen, Zhouxin; Thomas, John J.; Averbuj, Claudia; Broo, Klas M.; Engelhard, Mark; Crowell, John E.; Finn, M. G.; Siuzdak, Gary (2001). "Porous Silicon as a Versatile Platform for Laser Desorption/Ionization Mass Spectrometry". Analytical Chemistry. 73 (3): 612–619. doi:10.1021/ac000746f. ISSN 0003-2700.
  6. Thomas, J. J.; Shen, Z.; Crowell, J. E.; Finn, M. G.; Siuzdak, G. (2001). "Desorption/ionization on silicon (DIOS): A diverse mass spectrometry platform for protein characterization". Proceedings of the National Academy of Sciences. 98 (9): 4932–4937. Bibcode:2001PNAS...98.4932T. doi:10.1073/pnas.081069298. ISSN 0027-8424. PMC 33141. PMID 11296246.
  7. Huikko, K.; Östman, P.; Sauber, C.; Mandel, F.; Grigoras, K.; Franssila, S.; Kotiaho, T.; Kostiainen, R. (2003). "Feasibility of atmospheric pressure desorption/ionization on silicon mass spectrometry in analysis of drugs". Rapid Communications in Mass Spectrometry. 17 (12): 1339–1343. Bibcode:2003RCMS...17.1339H. doi:10.1002/rcm.1051. ISSN 0951-4198.
  8. Liu, Qiang; Guo, Zhong; He, Lin (2007). "Mass Spectrometry Imaging of Small Molecules Using Desorption/Ionization on Silicon". Analytical Chemistry. 79 (10): 3535–3541. doi:10.1021/ac0611465. ISSN 0003-2700.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.