Subantarctic
The Subantarctic is a region in the Southern Hemisphere, located immediately north of the Antarctic region. This translates roughly to a latitude of between 46° and 60° south of the Equator. The subantarctic region includes many islands in the southern parts of the Atlantic, Indian, and Pacific Oceans, especially those situated north of the Antarctic Convergence. Subantarctic glaciers are, by definition, located on islands within the subantarctic region. All glaciers located on the continent of Antarctica are by definition considered to be Antarctic glaciers.
Geography
The subantarctic region comprises two geographic zones and three distinct fronts. The northernmost boundary of the subantarctic region is the rather ill-defined Subtropical Front (STF), also referred to as the Subtropical Convergence. To the south of the STF is a geographic zone, the Subantarctic Zone (SAZ). South of the SAZ is the Subantarctic Front (SAF). South of the SAF is another marine zone, called the Polar Frontal Zone (PFZ). The SAZ and the PFZ together form the subantarctic region. The southernmost boundary of the PFZ (and hence, the southern border of the subantarctic region) is the Antarctic Convergence, located approximately 200 kilometers south of the Antarctic Polar Front (APF).[1]
Influence of the Antarctic Circumpolar Current and thermohaline circulation
The Subantarctic Front, found between 48°S and 58°S in the Indian and Pacific Ocean and between 42°S and 48°S in the Atlantic Ocean, defines the northern boundary of the Antarctic Circumpolar Current (or ACC).[1] The ACC is the most important ocean current in the Southern Ocean, and the only current that flows completely around the Earth. Flowing eastward through the southern portions of the Atlantic, Indian, and Pacific Oceans, the ACC links these three otherwise separate oceanic basins. Extending from the sea surface to depths of 2000–4000 meters, and with a width of as great as 2000 kilometers, the ACC transports more water than any other ocean current.[2] The ACC carries up to 150 Sverdrups (150 million cubic meters per second), equivalent to 150 times the volume of water flowing in all the world's rivers.[3] The ACC and the global thermohaline circulation strongly influence regional and global climate as well as underwater biodiversity.[4]
Another factor that contributes to the climate of the subantarctic region, though to a much lesser extent than the thermohaline circulation, is the formation of Antarctic Bottom Water (ABW) by halothermal dynamics. The halothermal circulation is that portion of the global ocean circulation that is driven by global density gradients created by surface heat and evaporation.
Definition of subantarctic: political versus scientific
Several distinct water masses converge in the immediate vicinity of the APF or Antarctic Convergence (in particular the Subantarctic Surface Water (Subantarctic Mode Water or SAMW), Antarctic Surface Water, and the Antarctic Intermediate Water). This convergence creates a unique environment, noted for its very high marine productivity, especially for Antarctic krill. Because of this, all lands and waters situated south of the Antarctic Convergence are considered to belong to the Antarctic from a climatological, biological and hydrological standpoint. However, the text of the Antarctic Treaty, article VI ("Area covered by Treaty") states: "The provisions of the present Treaty shall apply to the area south of 60° South latitude".[5] Therefore, Antarctica is defined from a political standpoint as all land and ice shelves south of 60°S latitude.
Subantarctic islands
The Tristan da Cunha group, Île Amsterdam, Île Saint-Paul, and Gough Island are all isolated volcanic islands situated at between 37°–40° south of the equator, just south of the southern Horse latitudes. Because they are located far to the north of the Antarctic Convergence and have a relatively temperate climate, they are not typically considered to be subantarctic islands.
At between about 46°–50° south of the equator, in the region often referred to as the Roaring Forties, are the Crozet Islands, Prince Edward Islands, Bounty Islands, Snares Islands, Kerguelen Islands, Antipodes Islands, and Auckland Islands. The geography of these islands is characterized by tundra, with some trees on Snares and Auckland Islands. These islands are all located near the Antarctic Convergence (with Kerguelen south of the Convergence) and are properly considered to be subantarctic islands.
At between 51°–56° south of the equator, the Falkland Islands, Isla de los Estados, Ildefonso Islands, Diego Ramírez Islands, and other islands associated with Tierra del Fuego and Cape Horn, lie north of the Antarctic Convergence in the region often referred to as the Furious Fifties. Unlike other subantarctic islands, these islands have trees, temperate grasslands (mostly tussac grass), and even arable land. They also lack tundra and permanent snow and ice at their lowest elevations. Despite their more southerly location, it is debatable whether these islands should be considered as such because their climate and geography differs significantly from other subantarctic islands.
At between 52°–57° south of the equator, Campbell Island group, Heard Island and McDonald Islands, Bouvet Island, South Georgia Group, Macquarie Island, and South Sandwich Islands are also located in the Furious Fifties. The geography of these islands is characterized by tundra, permafrost, and volcanoes. These islands are situated close to or south of the Antarctic Convergence, but north of 60° S latitude (the continental limit according to the Antarctic Treaty).[5] Therefore, although some are located south of the Antarctic Convergence, they should still be considered as subantarctic islands by virtue of their location north of 60° S.
At between 60°–69° south of the equator, the South Orkney Islands, South Shetland Islands, Balleny Islands, Scott Island, and Peter I Island are all properly considered to be Antarctic islands for the following three reasons:
- they are all located south of the Antarctic Convergence
- they are all located within the Southern (or Antarctic) Ocean
- they are all located south of the 60th parallel south (in the region often referred to as the Shrieking Sixties)
In light of the above considerations, the following should be considered to be subantarctic islands:
Name of island group | Coordinates[6][7] | Ocean[6] | Claimed by |
---|---|---|---|
Antipodes Islands | 49°40′S 178°46′E | Pacific Ocean | New Zealand |
Auckland Islands | 50°42′S 166°05′E | Pacific Ocean | New Zealand |
Bounty Islands | 47°45′S 179°03′E | Pacific Ocean | New Zealand |
Bouvet Island (Bouvetøya) | 54°26′S 03°24′E | Atlantic Ocean | Norway |
Campbell Island group | 52°32′S 169°08′E | Pacific Ocean | New Zealand |
Crozet Islands (French: Îles Crozet or officially Archipel Crozet) | 46°25′S 51°59′E | Indian Ocean | France |
Heard Island and McDonald Islands (HIMI) | 53°04′S 73°00′E | Indian Ocean | Australia |
Kerguelen Islands | 49°15′S 69°35′E | Indian Ocean | France |
Macquarie Island | 54°38′S 158°52′E | Pacific Ocean | Australia |
Prince Edward Islands | 46°46′S 37°51′E | Indian Ocean | South Africa |
South Georgia Group | 54°30′S 37°00′W | Atlantic Ocean | United Kingdom |
South Sandwich Islands | 57°30′S 27°00′W | Atlantic Ocean | United Kingdom |
Snares Islands | 48°01′S 166°32′E | Pacific Ocean | New Zealand |
Subantarctic glaciers
This is a list of glaciers in the subantarctic. This list includes one snow field (Murray Snowfield). Snow fields are not glaciers in the strict sense of the word, but they are commonly found at the accumulation zone or head of a glacier.[8] For the purposes of this list, Antarctica is defined as any latitude further south than 60° (the continental limit according to the Antarctic Treaty).[5]
Climate
Impact of climate change on SAMW
Together, the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) act as a carbon sink, absorbing atmospheric carbon dioxide and storing it in solution. If the SAMW temperature increases as a result of climate change, the SAMW will have less capacity to store dissolved carbon dioxide. Research using a computerized climate system model suggests that if atmospheric carbon dioxide concentration were to increase to 860 ppm by the year 2100 (roughly double today's concentration), the SAMW will decrease in density and salinity. The resulting reductions in the subduction and transport capacity of SAMW and AAIW water masses could potentially decrease the absorption and storage of CO2 in the Southern Ocean.[9]
Flora and fauna
- Main: Category: Flora of subantarctic islands, and Category: Fauna of subantarctic islands.
The Antarctic realm and Antarctic Floristic Kingdom include most of the subantarctic islands native biota, with many endemic genera and species of flora and fauna.
Subantarctic island example
- See also: Flora of Heard Island and McDonald Islands, and Fauna of Heard Island and McDonald Islands.
The physical landscape and biota communities of Heard Island and McDonald Islands are constantly changing due to volcanism, strong winds and waves, and climate change. Volcanic activity has been observed in this area since the mid-1980s, with fresh lava flows on the southwest flanks of Heard Island. Satellite imagery shows that McDonald Island increased in size from about 1 to 2.5 square kilometers between 1994 and 2004, as a result of volcanic activity.[10]
In addition to new land being produced by volcanism, global warming of the climate is causing the retreat of glaciers on the islands (see section below ). These combined processes produce new ice-free terrestrial and freshwater ecoregions, such as moraines and lagoons, which are now available for colonization by plants and animals.[10]
Heard Island has vast colonies of penguins and petrels, and large harems of land-based marine predators such as elephant seals and fur seals. Due to the very high numbers of seabirds and marine mammals on Heard Island, the area is considered a "biological hot spot".[10] The marine environment surrounding the islands features diverse and distinctive benthic habitats that support a range of species including corals, sponges, barnacles and echinoderms. This marine environment also serves as a nursery area for a range of fishes, including some species of commercial interest.[10]
Retreat of subantarctic glaciers
Glaciers are currently retreating at significant rates throughout the southern hemisphere. With respect to glaciers of the Andes mountains in South America, abundant evidence has been collected from ongoing research at Nevado del Ruiz in Colombia,[11][12] Quelccaya Ice Cap and Qori Kalis Glacier in Peru,[13][14] Zongo, Chacaltaya and Charquini glaciers in Bolivia,[15] the Aconcagua River Basin in the central Chilean Andes,[16] and the Northern Patagonian and Southern Patagonian ice fields.[17][18][19] Retreat of glaciers in New Zealand[20] and Antarctica is also well documented.
Bearing this in mind, it should come as no surprise that many subantarctic glaciers are also in retreat. Mass balance is significantly negative on many glaciers on Kergeulen Island, Heard Island, South Georgia and Bouvet Island.[21][22]
Glaciers of Heard Island
Heard Island is a heavily glacierized, subantarctic volcanic island located in the Southern Ocean, roughly 4000 kilometers southwest of Australia. 80% of the island is covered in ice, with glaciers descending from 2400 meters to sea level.[21] Due to the steep topography of Heard Island, most of its glaciers are relatively thin (averaging only about 55 meters in depth).[22] The presence of glaciers on Heard Island provides an excellent opportunity to measure the rate of glacial retreat as an indicator of climate change.[10]
Available records show no apparent change in glacier mass balance between 1874 and 1929. Between 1949 and 1954, marked changes were observed to have occurred in the ice formations above 5000 feet on the southwestern slopes of Big Ben, possibly as a result of volcanic activity. By 1963, major recession was obvious below 2000 feet on almost all glaciers, and minor recession was evident as high as 5000 feet.[23]
Retreat of glacier fronts across Heard Island is evident when comparing aerial photographs taken in December 1947 with those taken on a return visit in early 1980.[21][24] Retreat of Heard Island glaciers is most dramatic on the eastern section of the island, where the termini of former tidewater glaciers are now located inland.[21] Glaciers on the northern and western coasts have narrowed significantly, while the area of glaciers and ice caps on Laurens Peninsula have shrunk by 30% - 65%.[21][22]
During the time period between 1947 and 1988, the total area of Heard Island's glaciers decreased by 11%, from 288 km² (roughly 79% of the total area of Heard Island) to only 257 km².[22] A visit to the island in the spring of 2000 found that the Stephenson, Brown and Baudissin glaciers, among others, had retreated even further.[22][24] The terminus of Brown Glacier has retreated approximately 1.1 kilometres since 1950.[10] The total ice-covered area of Brown Glacier is estimated to have decreased by roughly 29% between 1947 and 2004.[24] This degree of loss of glacier mass is consistent with the measured increase in temperature of +0.9 °C over that time span.[24]
The coastal ice cliffs of Brown Glacier and Stephenson Glacier, which in 1954 were over 50 feet high, had disappeared by 1963 when the glaciers terminated as much as 100 yards inland.[23] Baudissin Glacier on the north coast, and Vahsel Glacier on the west coast have lost at least 100 and 200 vertical feet of ice, respectively.[23] Winston Glacier, which retreated approximately one mile between 1947 and 1963, appears to be a very sensitive indicator of glacier change on the island. The young moraines flanking Winston Lagoon show that Winston Glacier has lost at least 300 vertical feet of ice within a recent time period.[23]
The glaciers of Laurens Peninsula, whose maximum elevation is only 500 m above sea level, are smaller and shorter than most of the other Heard Island glaciers, and therefore much more sensitive to temperature effects. Accordingly, their total area has decreased by over 30 percent. Jacka Glacier on the east coast of Laurens Peninsula has also demonstrated marked recession since 1955.[23] In the early 1950s, Jacka Glacier had receded only slightly from its position in the late 1920s, but by 1997 it had receded about 700 m back from the coastline.[21][22][25][26]
Possible causes of glacier recession on Heard Island include:
- Volcanic activity
- Southward movement of the Antarctic Convergence: such a movement conceivably might cause glacier retreat through a rise in sea and air temperatures
- Climatic change
The Australian Antarctic Division conducted an expedition to Heard Island during the austral summer of 2003–04. A small team of scientists spent two months on the island, conducting studies on avian and terrestrial biology and glaciology. Glaciologists conducted further research on the Brown Glacier, in an effort to determine whether glacial retreat is rapid or punctuated. Using a portable echo sounder, the team took measurements of the volume of the glacier. Monitoring of climatic conditions continued, with an emphasis on the impact of Foehn winds on glacier mass balance.[27] Based on the findings of that expedition, the rate of loss of glacier ice on Heard Island appears to be accelerating. Between 2000 and 2003, repeat GPS surface surveys revealed that the rate of loss of ice in both the ablation zone and the accumulation zone of Brown Glacier was more than double average rate measured from 1947 to 2003. The increase in the rate of ice loss suggests that the glaciers of Heard Island are reacting to ongoing climate change, rather than approaching dynamic equilibrium.[24] The retreat of Heard Island's glaciers is expected to continue for the foreseeable future.[21]
See also
- Extreme points of Antarctica
- List of glaciers
- Subarctic climate
- Category: Flora of the subantarctic islands
References
- Ryan Smith; Melicie Desflots; Sean White; Arthur J. Mariano; Edward H. Ryan (2008). "Surface Currents in the Southern Ocean:The Antarctic CP Current". The Cooperative Institute for Marine and Atmospheric Studies (CIMAS). Archived from the original on 14 June 2010. Retrieved 1 June 2010.
- Klinck, J. M., W. D. Nowland Jr. (2001). "Antarctic Circumpolar Current". Encyclopedia of Ocean Science (1st ed.). New York: Academic Press. pp. 151–159.CS1 maint: multiple names: authors list (link)
- Joanna Gyory; Arthur J. Mariano; Edward H. Ryan. "The Gulf Stream". The Cooperative Institute for Marine and Atmospheric Studies (CIMAS). Archived from the original on 1 June 2010. Retrieved 1 June 2010.
- Ray Lilley (19 May 2008). "Millions of tiny starfish inhabit undersea volcano". Associated Press. Archived from the original on 9 March 2012. Retrieved 1 June 2010.
- Office of Polar Programs (OPP) (26 April 2010). "The Antarctic Treaty". The National Science Foundation, Arlington, Virginia. Archived from the original on 17 January 2012. Retrieved 1 June 2010.
- "Antarctic Names". Geographic Names Information System. United States Geological Survey. Retrieved 1 June 2010.
- "Antarctic Gazetteer". Australian Antarctic Data Centre. Australian Antarctic Division. Archived from the original on 28 May 2010. Retrieved 1 June 2010.
- Dr. Sue Ferguson, United States Department of Agriculture Forest Service. "Types of Glacier". University of Colorado, Boulder, Colorado: National Snow and Ice Data Center. Archived from the original on 17 April 2010. Retrieved 1 June 2010.
- Stephanie M. Downes; Nathaniel L. Bindoff; Stephen R. Rintoul (2009). "Impacts of Climate Change on the Subduction of Mode and Intermediate Water Masses in the Southern Ocean". Journal of Climate. 22 (12): 3289–3302. Bibcode:2009JCli...22.3289D. doi:10.1175/2008JCLI2653.1.
- "'Big brother' monitors glacial retreat in the sub-Antarctic". Kingston, Tasmania, Australia: Australian Antarctic Division. 8 October 2008. Archived from the original on 7 May 2013. Retrieved 19 June 2013.
- Jon J. Major & Christopher G. Newhall (1989). "Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods". Bulletin of Volcanology. 52 (1): 1–27. Bibcode:1989BVol...52....1M. doi:10.1007/BF00641384.
- Cristian Huggel; Ceballos, Jorge Luis; Pulgarín, Bernardo; Ramírez, Jair; Thouret, Jean-Claude (2007). "Review and reassessment of hazards owing to volcano–glacier interactions in Colombia" (PDF). Annals of Glaciology. 45 (1): 128–136. Bibcode:2007AnGla..45..128H. doi:10.3189/172756407782282408. Archived (PDF) from the original on 27 March 2009. Retrieved 1 June 2010.
- Richard S. Williams Jr. & Jane G. Ferrigno (9 February 1999). "Peruvian Cordilleras". United States Geological Survey, United States Department of the Interior. Archived from the original on 4 June 2008. Retrieved 1 June 2010.
- L.G. Thompson; E. Mosley-Thompson; et al. (1 June 2010). "Peru - Quelccaya (1974 - 1983)". Byrd Polar Research Center, Ohio State University, Columbus, Ohio. Archived from the original on 23 June 2010. Retrieved 1 June 2010.
- Bernard Francou (Institut de Recherche pour le Développement) (17 January 2001). "Small Glaciers Of The Andes May Vanish In 10-15 Years". UniSci, International Science News. Archived from the original on 20 February 2010. Retrieved 1 June 2010.
- Francisca Bown; Andres Rivera; Cesar Acuna (2008). "Recent glacier variations at the Aconcagua Basin, central Chilean Andes" (PDF). Annals of Glaciology. 48 (2): 43–48. Bibcode:2008AnGla..48...43B. doi:10.3189/172756408784700572. Archived (PDF) from the original on 7 July 2011. Retrieved 1 June 2010.
- Jonathan Amos (27 April 2004). "Patagonian ice in rapid retreat". BBC News. Archived from the original on 30 September 2009. Retrieved 1 June 2010.
- Mariano H. Masiokas, Andrés Rivera, Lydia E. Espizua, Ricardo Villalba, Silvia Delgado and Juan Carlos Aravena (15 October 2009). "Glacier fluctuations in extratropical South America during the past 1000 years". Palaeogeography, Palaeoclimatology, Palaeoecology. 281 (3–4): 242–268. Bibcode:2009PPP...281..242M. doi:10.1016/j.palaeo.2009.08.006.CS1 maint: multiple names: authors list (link)
- Japan Aerospace Exploration Agency (3 September 2008). "Huge glaciers retreat on a large scale in Patagonia, South America". Earth Observation Research Center. Archived from the original on 21 July 2011. Retrieved 1 June 2010.
- "Glaciers of New Zealand". Satellite Image Atlas of Glaciers of the World. U.S. Geological Survey. Archived from the original on 9 November 2009. Retrieved 1 June 2010.
- Ian F. Allison & Peter L. Keage (1986). "Recent changes in the glaciers of Heard Island". Polar Record. 23 (144): 255–272. doi:10.1017/S0032247400007099.
- Andrew Ruddell (2010-05-25). "Our subantarctic glaciers: why are they retreating?". Glaciology Program, Antarctic CRC and AAD. Archived from the original on 13 February 2014. Retrieved 19 June 2013.
- G.M. Budd; P.J. Stephenson (1970). "Recent glacier retreat on Heard Island" (PDF). International Association for Scientific Hydrology. 86: 449–458. Archived (PDF) from the original on 19 June 2011. Retrieved 7 June 2010.
- Douglas E. Thost; Martin Truffer (February 2008). "Glacier Recession on Heard Island, Southern Indian Ocean". Arctic, Antarctic, and Alpine Research. 40 (1): 199–214. doi:10.1657/1523-0430(06-084)[THOST]2.0.CO;2. Archived from the original on 4 December 2012. Retrieved 7 June 2010.
- Quilty, P.G. & Wheller, G. (2000). "Heard Island and the McDonald Islands: A window into the Kerguelen Plateau (Heard Island Papers)". Pap. Proc. R. Soc. Tasm. 133 (2): 1–12.
- Budd, G.M. (2000). "Changes in Heard Island glaciers, king penguins and fur seals since 1947 (Heard Island Papers)". Pap. Proc. R. Soc. Tasm. 133 (2): 47–60.
- Heard Island and McDonald Islands (HIMI). "Australian Research Expeditions". Kingston, Tasmania, Australia: Department of the Environment, Water, Heritage and the Arts, Australian Antarctic Division, Territories, Environment and Treaties Section. Archived from the original on 16 February 2011. Retrieved 7 June 2010.
Further reading
- U. Radok & D. Watts (1975). "A synoptic background to glacier variations of Heard Island" (PDF). Snow and Ice (Proceedings of the Moscow Symposium, August 1971) (104 ed.). Wallingford, Oxfordshire, UK: International Association of Hydrological Sciences. pp. 42–56. Retrieved 7 June 2010.
- Truffer, M., Thost, D. and Ruddell, A. (2001). "The Brown Glacier, Heard Island: its morphology, dynamics, mass balance and climate setting". Antarctic CRC Research Report No. 24. Hobart, Tasmania: Cooperative Research Centre for the Antarctic and Southern Ocean Environment, University of Tasmania. pp. 1–27.CS1 maint: multiple names: authors list (link)
- Kevin Kiernan & Anne McConnell (2002). "Glacier retreat and melt-lake expansion at Stephenson Glacier, Heard Island World Heritage Area" (PDF). Polar Record. 38 (207): 297–308. doi:10.1017/S0032247400017988. Retrieved 7 June 2010.
- Paul Carroll (1 March 2004). "The South Atlantic and Subantarctic Islands". Derby, United Kingdom: Paul Carroll. Archived from the original on 16 May 2006. Retrieved 14 June 2010.