Long-chain-aldehyde dehydrogenase

Fatty aldehyde dehydrogenase (or Long-chain-aldehyde dehydrogenase) is an aldehyde dehydrogenase enzyme that in human is encoded in the ALDH3A2 gene on chromosome 17. Aldehyde dehydrogenase enzymes function to remove toxic aldehydes that are generated by the metabolism of alcohol and by lipid peroxidation.

ALDH3A2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesALDH3A2, aldehyde dehydrogenase 3 family, member A2, ALDH10, FALDH, SLS, aldehyde dehydrogenase 3 family member A2
External IDsOMIM: 609523 MGI: 1353452 HomoloGene: 55458 GeneCards: ALDH3A2
Gene location (Human)
Chr.Chromosome 17 (human)[1]
Band17p11.2Start19,648,136 bp[1]
End19,685,760 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

224

11671

Ensembl

ENSG00000072210

ENSMUSG00000010025

UniProt

P51648

P47740

RefSeq (mRNA)

NM_007437
NM_001331114
NM_001331115

RefSeq (protein)

NP_001318043
NP_001318044
NP_031463

Location (UCSC)Chr 17: 19.65 – 19.69 MbChr 11: 61.22 – 61.27 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structure

The ALDH3A2 belongs to the aldehyde dehydrogenase superfamily and is a membrane-associated protein typically containing 485 residues. The mature protein functions as a dimer. The structure was resolved using X-ray crystallography at 2.1 Angstrom resolution. It contains an element in the C-terminal region referred to as a "gatekeeper" helix, which is adjacent to the membrane-anchored transmembrane domain and the catalytic core. The gatekeeper helix appears to control access of molecular substrates to the catalytic core and allows efficient transit between membranes and catalytic sites.[5]

Function

ALDH3A2 catalyzes the oxidation of long-chain aliphatic aldehydes into fatty acids. It is known to act on a variety of both saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length, as well as dihydrophytal, a 20-carbon branched chain aldehyde.[6] It requires NAD+ as a co-factor. The encoded enzyme is responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid. ALD3H2 is expressed in the human liver and has been found to localize the microsome fraction inside the cell.[7]

At least two alternative splicing isoforms of ALDH3A2 are known to exist. The alternative transcript differs by an additional exon and anchors differently to the endoplasmic reticulum vs. the peroxisome [8]

Clinical significance

Mutations and deletions of in the ALDH3A2 gene have been widely associated with the autosomal recessive Sjögren-Larsson syndrome, an autosomal recessive neurocutaneous disease.[9] Multiple mutations have been found in different families, including those that molecularly disrupts the protein dimerization interface or reduces mRNA stability. Absence or insufficiency of ALDH3A2 protein products in mutant cells are known to cause abnormal metabolism of sphingosine 1-phosphate to ether-linked glycerolipids and the abnormal accumulation of lipid precursors.

gollark: My laptop has 8GB of RAM, you don't really *need* to deallocate anything.
gollark: Thus, reject garbage collector, return to osmarksmalloc.
gollark: I'm sure you thought that I thought that you were sure that I was sure that I'd like to think that you'd like to think that I'd like you to think that you'd like me to think that you'd like me to think so.
gollark: I'm sure you'd like to think I'd like to think I'd like to think you'd like me to think so.
gollark: I'm sure you'd like me to think so.

References

  1. GRCh38: Ensembl release 89: ENSG00000072210 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000010025 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Keller MA, Zander U, Fuchs JE, Kreutz C, Watschinger K, Mueller T, Golderer G, Liedl KR, Ralser M, Kräutler B, Werner ER, Marquez JA (2014). "A gatekeeper helix determines the substrate specificity of Sjögren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase". Nat Commun. 5: 4439. doi:10.1038/ncomms5439. PMC 4109017. PMID 25047030.
  6. Kelson TL, Secor McVoy JR, Rizzo WB (1997). "Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization". Biochim. Biophys. Acta. 1335 (1–2): 99–110. doi:10.1016/s0304-4165(96)00126-2. PMID 9133646.
  7. Kelson TL, Secor McVoy JR, Rizzo WB (1997). "Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization". Biochim. Biophys. Acta. 1335 (1–2): 99–110. doi:10.1016/s0304-4165(96)00126-2. PMID 9133646.
  8. Rogers GR, Markova NG, De Laurenzi V, Rizzo WB, Compton JG (1997). "Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)" (PDF). Genomics. 39 (2): 127–35. doi:10.1006/geno.1996.4501. PMID 9027499.
  9. Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A (2012). "The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway". Mol. Cell. 46 (4): 461–71. doi:10.1016/j.molcel.2012.04.033. PMID 22633490.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.