93 (number)

93 (ninety-three) is the natural number following 92 and preceding 94.

92 93 94
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinalninety-three
Ordinal93rd
(ninety-third)
Factorization3 × 31
Divisors1, 3, 31, 93
Greek numeralϞΓ´
Roman numeralXCIII
Binary10111012
Ternary101103
Octal1358
Duodecimal7912
Hexadecimal5D16

In mathematics

93 is:

There are 93 different cyclic Gilbreath permutations on 11 elements,[9] and therefore there are 93 different real periodic points of order 11 on the Mandelbrot set.[10]

In other fields

Ninety-three is:

In classical Persian finger counting, the number 93 is represented by a closed fist. Because of this, classical Arab and Persian poets around 1 CE referred to someone's lack of generosity by saying that the person's hand made "ninety-three".[13]

gollark: <:apioform:812013353165389875> <:cryoapioform:812015306662477864>
gollark: <@805534998660775986> <@509849474647064576>
gollark: <@805534998660775986>
gollark: Ah, great.
gollark: ++magic py```#timeout:0import asynciowhile True: await ctx.send("h") await asyncio.sleep(2.5)```

See also

References

  1. Sloane, N. J. A. (ed.). "Sequence A001358". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "Sequence A001748". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "Sequence A056809". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "Sequence A016105". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "Sequence A048330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. Sloane, N. J. A. (ed.). "Sequence A000959". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. Sloane, N. J. A. (ed.). "Sequence A000125". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "Sequence A000926". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. Sloane, N. J. A. (ed.). "Sequence A000048". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. Diaconis, Persi; Graham, Ron (2012), "Chapter 5: From the Gilbreath Principle to the Mandelbrot Set", Magical Mathematics: the mathematical ideas that animate great magic tricks, Princeton University Press, pp. 61–83.
  11. Durand, Alain-Philippe (2002), Black, Blanc, Beur: Rap Music and Hip-Hop Culture in the Francophone World, Scarecrow Press, p. 55, ISBN 9780810844315.
  12. Meltzer, Marisa; Shepherd, Julianne (March 2006), "Spitting Fire", Spin: 76–81.
  13. Bloom, Jonathan M. (Spring 2002), "Hand sums: The ancient art of counting on your fingers", Boston College Magazine.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.