93 (number)

93 (ninety-three) is the natural number following 92 and preceding 94.

92 93 94
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinalninety-three
Ordinal93rd
(ninety-third)
Factorization3 × 31
Divisors1, 3, 31, 93
Greek numeralϞΓ´
Roman numeralXCIII
Binary10111012
Ternary101103
Octal1358
Duodecimal7912
Hexadecimal5D16

In mathematics

93 is:

There are 93 different cyclic Gilbreath permutations on 11 elements,[9] and therefore there are 93 different real periodic points of order 11 on the Mandelbrot set.[10]

In other fields

Ninety-three is:

In classical Persian finger counting, the number 93 is represented by a closed fist. Because of this, classical Arab and Persian poets around 1 CE referred to someone's lack of generosity by saying that the person's hand made "ninety-three".[13]

gollark: Imagine not running an emulator for a Minecraft computer mod directly on your computer's boot thingy.
gollark: None of that "operating system" getting in the way.
gollark: This is why on performance-sensitive computers, I run PotatOS on CraftOS-EFI for maximum performance.
gollark: I think the reason my music listening is using so much CPU, for instance, is that I'm using YouTube for it, which provides videos, which Firefox is decoding even if the actual video content isn't seen. The actual audio content I care about could probably be decoded on a cheap ARM microcontroller or something if there wasn't so much random stuff in the way.
gollark: Petition to rewrite Linux in Haskell.

See also

References

  1. Sloane, N. J. A. (ed.). "Sequence A001358". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "Sequence A001748". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "Sequence A056809". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "Sequence A016105". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "Sequence A048330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. Sloane, N. J. A. (ed.). "Sequence A000959". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. Sloane, N. J. A. (ed.). "Sequence A000125". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "Sequence A000926". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. Sloane, N. J. A. (ed.). "Sequence A000048". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. Diaconis, Persi; Graham, Ron (2012), "Chapter 5: From the Gilbreath Principle to the Mandelbrot Set", Magical Mathematics: the mathematical ideas that animate great magic tricks, Princeton University Press, pp. 61–83.
  11. Durand, Alain-Philippe (2002), Black, Blanc, Beur: Rap Music and Hip-Hop Culture in the Francophone World, Scarecrow Press, p. 55, ISBN 9780810844315.
  12. Meltzer, Marisa; Shepherd, Julianne (March 2006), "Spitting Fire", Spin: 76–81.
  13. Bloom, Jonathan M. (Spring 2002), "Hand sums: The ancient art of counting on your fingers", Boston College Magazine.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.