145 (number)
145 (one hundred [and] forty-five) is the natural number following 144 and preceding 146.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred forty-five | |||
Ordinal | 145th (one hundred forty-fifth) | |||
Factorization | 5 × 29 | |||
Divisors | 1, 5, 29, 145 | |||
Greek numeral | ΡΜΕ´ | |||
Roman numeral | CXLV | |||
Binary | 100100012 | |||
Ternary | 121013 | |||
Quaternary | 21014 | |||
Quinary | 10405 | |||
Senary | 4016 | |||
Octal | 2218 | |||
Duodecimal | 10112 | |||
Hexadecimal | 9116 | |||
Vigesimal | 7520 | |||
Base 36 | 4136 |
In mathematics
- Although composite, 145 is a Fermat pseudoprime to sixteen bases with b < 145. In four of those bases, it is a strong pseudoprime: 1, 12, 17, and 144.
- Given 145, the Mertens function returns 0.[1]
- 145 is a pentagonal number[2] and a centered square number.[3]
- . 145 is the fourth number that is the sum of two different pairs of squares. Also, 145 is the result of 34 + 43, making it a Leyland number.
- , making it a factorion.[4] The only other numbers that have the property that they are the sum of the factorials of their digits are 1, 2 and 40585.[4]
In the military
- USS Armada (AM-145) was a United States Navy Admirable-class minesweeper during World War II
- USS Colbert (APA-145) was a United States Navy Haskell-class attack transport during World War II
- USS General Harry Taylor (AP-145) was a United States Navy General G. O. Squier-class transport ship during World War II
- USS Greer (DD-145) was a United States Navy Wickes-class destroyer during World War II
- USS Huse (DE-145) was a United States Navy Edsall-class destroyer escort during World War II
- USS Roanoke (CL-145) was a United States Navy cruiser following World War II
In sports
- The Grand Union Canal Race is a 145-mile ultramarathon from Birmingham to London along the Grand Union Canal
In transportation
- Eurocopter EC 145 is a twin-engine light utility helicopter
- The Delahaye 145 Sports Car from 1938
- The Alfa Romeo 145 car produced between 1994 and 2001
- Volvo 145 Express station wagon
- ERJ 145 regional jets produced by Embraer
- Golden Gate Transit Bus Route 145
- London Bus Route 145
In other fields
145 is also:
- The year AD 145 or 145 BC
- 145 AH is a year in the Islamic calendar that corresponds to 762 – 763 CE
- 145 Adeona is a large Main belt asteroid
- Psalm 145
- Sonnet 145
- Apple Computer laptops, such as the PowerBook 145 and PowerBook 145B
- Puff Daddy song “Picture it” includes the lyrics “in something foreign soarin’ 145”
- Tsuu T'ina Nation 145 Indian reserve in Alberta, Canada
- 145 mg medicine tablets, as with Tricor
- "One Four Five" is a song by The Cat Empire
gollark: What's the license?
gollark: ????
gollark: Don't program your own shop. Wheel reinvention is stupid.
gollark: Oh, GPL stuff.
gollark: Source of *what*?
See also
References
- Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 140
- "Sloane's A028442 : Numbers n such that Mertens' function is zero". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A000326 : Pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
- "Sloane's A014080 : Factorions". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
External links
Wikimedia Commons has media related to 145 (number). |
- The Natural Number 145
- Parker, Matt. "145 and the Melancoil". Numberphile. Brady Haran. Archived from the original on 2013-05-14. Retrieved 2013-04-06.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.