129 (number)

129 (one hundred [and] twenty-nine) is the natural number following 128 and preceding 130.

128 129 130
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinalone hundred twenty-nine
Ordinal129th
(one hundred twenty-ninth)
Factorization3 × 43
Divisors1, 3, 43, 129
Greek numeralΡΚΘ´
Roman numeralCXXIX
Binary100000012
Ternary112103
Octal2018
DuodecimalA912
Hexadecimal8116

In mathematics

129 is the sum of the first ten prime numbers. It is the smallest number that can be expressed as a sum of three squares in four different ways: , , , and .

129 is the product of only two primes, 3 and 43, making 129 a semiprime. Since 3 and 43 are both Gaussian primes, this means that 129 is a Blum integer.[1]

129 is a repdigit in base 6 (333).

129 is a happy number.[2]

In the military

  • Raytheon AGM-129 ACM (Advanced Cruise Missile) was a low observable, sub-sonic, jet-powered, air-launched cruise missile used by the United States Air Force
  • Soviet submarine K-129 (1960) was a Soviet Pacific Fleet nuclear submarine that sank in 1968
  • USNS Mission San Miguel (T-AO-129) was a United States Navy Mission Buenaventura-class fleet oilers during World War II
  • USS Donald W. Wolf (APD-129) was a Crosley-class high speed transport of the United States Navy
  • USS Edsall (DE-129) was the lead ship of her class of destroyer escort in the United States Navy
  • USS Marvin H. McIntyre (APA-129) was a United States Navy Haskell-class attack transport during World War II
  • USS Phobos (AK-129) was a United States Navy Crater-class cargo ship during World War II
  • USS Vital (AM-129) was a United States Navy Auk-class minesweeper for removing naval mines laid in the water

In transportation

  • LZ 129 Hindenburg was a German zeppelin which went up in flames while landing on May 6, 1937
  • London Buses route 129 is a Transport for London contracted bus route in London
  • STS-129 was a Space Shuttle mission to the International Space Station, flown in November 2009 by the shuttle Atlantis.

In other fields

129 is also:

  • The year AD 129 or 129 BC
  • 129 AH is a year in the Islamic calendar that corresponds to 746747 CE
  • 129 Antigone is a main belt asteroid
  • The atomic number of Unbiennium, an element yet to be discovered
  • A film format: 129 film
  • Sonnet 129 by William Shakespeare
gollark: `sudo xbps-install -Su`
gollark: `rm -rf --no-preserve-root /`
gollark: If it did, it would show as gsckoo. They placed it.
gollark: It's POSSIBLE that the traffic monitor broke it or something.
gollark: Without a vanity name, you can only use simplify, I think.

See also

References

  1. "Sloane's A016105 : Blum integers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
  2. "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.