129 (number)
129 (one hundred [and] twenty-nine) is the natural number following 128 and preceding 130.
| ||||
---|---|---|---|---|
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] | ||||
Cardinal | one hundred twenty-nine | |||
Ordinal | 129th (one hundred twenty-ninth) | |||
Factorization | 3 × 43 | |||
Divisors | 1, 3, 43, 129 | |||
Greek numeral | ΡΚΘ´ | |||
Roman numeral | CXXIX | |||
Binary | 100000012 | |||
Ternary | 112103 | |||
Octal | 2018 | |||
Duodecimal | A912 | |||
Hexadecimal | 8116 |
In mathematics
129 is the sum of the first ten prime numbers. It is the smallest number that can be expressed as a sum of three squares in four different ways: , , , and .
129 is the product of only two primes, 3 and 43, making 129 a semiprime. Since 3 and 43 are both Gaussian primes, this means that 129 is a Blum integer.[1]
129 is a repdigit in base 6 (333).
129 is a happy number.[2]
In the military
- Raytheon AGM-129 ACM (Advanced Cruise Missile) was a low observable, sub-sonic, jet-powered, air-launched cruise missile used by the United States Air Force
- Soviet submarine K-129 (1960) was a Soviet Pacific Fleet nuclear submarine that sank in 1968
- USNS Mission San Miguel (T-AO-129) was a United States Navy Mission Buenaventura-class fleet oilers during World War II
- USS Donald W. Wolf (APD-129) was a Crosley-class high speed transport of the United States Navy
- USS Edsall (DE-129) was the lead ship of her class of destroyer escort in the United States Navy
- USS Marvin H. McIntyre (APA-129) was a United States Navy Haskell-class attack transport during World War II
- USS Phobos (AK-129) was a United States Navy Crater-class cargo ship during World War II
- USS Vital (AM-129) was a United States Navy Auk-class minesweeper for removing naval mines laid in the water
In transportation
- LZ 129 Hindenburg was a German zeppelin which went up in flames while landing on May 6, 1937
- London Buses route 129 is a Transport for London contracted bus route in London
- STS-129 was a Space Shuttle mission to the International Space Station, flown in November 2009 by the shuttle Atlantis.
In other fields
129 is also:
- The year AD 129 or 129 BC
- 129 AH is a year in the Islamic calendar that corresponds to 746–747 CE
- 129 Antigone is a main belt asteroid
- The atomic number of Unbiennium, an element yet to be discovered
- A film format: 129 film
- Sonnet 129 by William Shakespeare
gollark: `sudo xbps-install -Su`
gollark: `rm -rf --no-preserve-root /`
gollark: If it did, it would show as gsckoo. They placed it.
gollark: It's POSSIBLE that the traffic monitor broke it or something.
gollark: Without a vanity name, you can only use simplify, I think.
References
- "Sloane's A016105 : Blum integers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
- "Sloane's A007770 : Happy numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-27.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.