Solar eclipse of May 10, 1994

An annular solar eclipse occurred at the moon's descending node of the orbit on Tuesday, May 10, 1994. It was visible over a wide swath of North America, from Baja California across the Midwest of the United States up through Ontario and Nova Scotia in Canada. Occurring only 1.6 days after apogee (Perigee on May 9, 1994 at 02:18 UTC or May 8, 1994 at 22:18 EDT or 19:18 PDT), the moon's apparent diameter was smaller. This solar eclipse belonged to Saros series 128 because occurred at the Moon's descending node and 128 is an even number.

Solar eclipse of May 10, 1994
Map
Type of eclipse
NatureAnnular
Gamma0.4077
Magnitude0.9431
Maximum eclipse
Duration373 sec (6 m 13 s)
Coordinates41.5°N 84.1°W / 41.5; -84.1
Max. width of band230 km (140 mi)
Times (UTC)
Greatest eclipse17:12:27
References
Saros128 (57 of 73)
Catalog # (SE5000)9495

The Annular Eclipse of May 10, 1994

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. The eclipse is either total or annular. In a total eclipse, the moon's size from earth is large enough to block all of the disk of the sun.

An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring), that is there is a ring of the sun around the dark moon. An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

The path of annularity crossed four states of Mexico (Baja California Sur, Baja California, Sonora and Chihuahua), the United States, the Canadian provinces of Ontario, Nova Scotia and the southeastern tip of Quebec, Azores Islands except Santa Maria Island, and part of Morocco including the capital city Rabat. Niagara Falls was also covered by the path of annularity.

Images

Eclipses of 1994

Solar eclipses 1993–1996

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Saros 128

This eclipse is a member of the Solar Saros cycle 128, which includes 73 eclipses occurring in intervals of 18 years and 11 days. The series started with partial solar eclipse on August 29, 984 AD. From May 16, 1417 through June 18, 1471 the series produced total solar eclipses, followed by hybrid solar eclipses from June 28, 1489 through July 31, 1543, and annular solar eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. All eclipses in this series occurs at the Moon’s descending node.

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic cycle

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

gollark: Nope, no scripts.
gollark: So apparently I can turn the majority of User:Osmarks green.
gollark: Apparently the esowiki has no protection against malicious CSS.
gollark: CSS... keylogger time?
gollark: Wait, doesn't it let me include arbitrary CSS on my user page?

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

Photos:

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.