Solar eclipse of October 2, 1959

A total solar eclipse occurred on October 2, 1959. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from northeastern Massachusetts and the southern tip of New Hampshire in the United States, Canary Islands, Morocco, Spanish Sahara (today's West Sahara) including the capital city Laayoune, French Mauritania (today's Mauritania), Mali Federation (part now belonging to Mali), French Niger (today's Niger), British Nigeria (today's Nigeria), British Cameroons and French Cameroons (now belonging to Cameroon), French Chad (today's Chad) including the capital city Fort-Lamy, French Central Africa (today's Central African Republic), Sudan (part of the path of totality is now in South Sudan), Ethiopia, and the Trust Territory of Somaliland (today's Somalia).

Solar eclipse of October 2, 1959
Map
Type of eclipse
NatureTotal
Gamma0.4207
Magnitude1.0325
Maximum eclipse
Duration182 sec (3 m 2 s)
Coordinates20.4°N 1.4°W / 20.4; -1.4
Max. width of band120 km (75 mi)
Times (UTC)
Greatest eclipse12:27:00
References
Saros143 (20 of 72)
Catalog # (SE5000)9419

Observations

Totality began over Boston, Massachusetts at sunrise. Viewing the eclipse was rained out, but it was reported that the brightening of the sky after the eclipse was a startling and impressive sight.[1] A few photographers captured the eclipse from airplanes above the clouds, and a multiple exposure was made atop the R. C. A. building in New York City.[2] The next total eclipse over Boston, the solar eclipse of May 1, 2079, will also be a sunrise event.[3]

The event was also observed at the Canarian Island of Fuerteventura by a team of Dutch astronomers of the university of Utrecht and Amsterdam.[4][5]

Solar eclipses of 1957–1960

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

Solar 143

It is a part of Saros cycle 143, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on March 7, 1617 and total event from June 24, 1797 through October 24, 1995. It has hybrid eclipses from November 3, 2013 through December 6, 2067, and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2873. The longest duration of totality was 3 minutes, 50 seconds on August 19, 1887. All eclipses in this series occurs at the Moon’s ascending node.

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

gollark: Well, it's the letter before τ.
gollark: Oh wait, it's not.
gollark: Well, it's the letter after τ.
gollark: Or ¼σ.
gollark: π is an outdated name for ½τ.

See also

  • List of solar eclipses visible from the United Kingdom 1000–2090 AD

Notes

  1. Journal of the Royal Astronomical Society of Canada, Vol. 54, p.43,
  2. Sky and Telescope, Vol. XIX, No. 1, p. 4.
  3. http://www.space.com/spacewatch/050408_solar_eclipse.html
  4. http://www.staff.science.uu.nl/~rutte101/Utrecht_eclipse.html
  5. Report of the Netherlands expedition for the observation of the total solar eclipse on october 2, 1959. Houtgast, J., Proceedings of the Royal Netherlands Academy of Arts and Sciences, Vol. 63, Nr. 5, p. 611 (1960)
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.