Solar eclipse of August 10, 1915

An annular solar eclipse occurred on August 10, 1915. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, with the only land being Haha-jima Group in Japan, where the eclipse occurred on August 11 because it is west of International Date Line.

Solar eclipse of August 10, 1915
Map
Type of eclipse
NatureAnnular
Gamma0.0124
Magnitude0.9853
Maximum eclipse
Duration93 sec (1 m 33 s)
Coordinates16.4°N 161.4°W / 16.4; -161.4
Max. width of band52 km (32 mi)
Times (UTC)
Greatest eclipse22:52:25
References
Saros134 (38 of 71)
Catalog # (SE5000)9316

Solar eclipse 1913–1917

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Saros 134

It is a part of Saros cycle 134, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on June 22, 1248. It contains total eclipses from October 9, 1428 through December 24, 1554 and hybrid eclipses from January 3, 1573 through June 27, 1843, and annular eclipses from July 8, 1861 through May 21, 2384. The series ends at member 71 as a partial eclipse on August 6, 2510. The longest duration of totality was 1 minutes, 30 seconds on October 9, 1428. All eclipses in this series occurs at the Moon’s descending node.[2]

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. http://eclipse.gsfc.nasa.gov/SEsaros/SEsaros134.html
gollark: Hopefully someone will join who can deal with it better than me.
gollark: Guess what version we're *not* running?
gollark: The sleeping bag complains when I try and sleep on water.
gollark: Me when I begin travelling 5000 blocks to recover my instantaneously seaserpentized corpse.
gollark: Apparently trying to make a toolbox crashed the server.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.