Pentaapeirogonal tiling
In geometry, the pentaapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of r{∞,5}.
pentaapeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (5.∞)2 |
Schläfli symbol | r{∞,5} or |
Wythoff symbol | 2 | ∞ 5 |
Coxeter diagram | |
Symmetry group | [∞,5], (*∞52) |
Dual | Order-5-infinite rhombille tiling |
Properties | Vertex-transitive edge-transitive |
Related polyhedra and tiling
*5n2 symmetry mutations of quasiregular tilings: (5.n)2 | ||||||||
---|---|---|---|---|---|---|---|---|
Symmetry *5n2 [n,5] |
Spherical | Hyperbolic | Paracompact | Noncompact | ||||
*352 [3,5] |
*452 [4,5] |
*552 [5,5] |
*652 [6,5] |
*752 [7,5] |
*852 [8,5]... |
*∞52 [∞,5] |
[ni,5] | |
Figures | ||||||||
Config. | (5.3)2 | (5.4)2 | (5.5)2 | (5.6)2 | (5.7)2 | (5.8)2 | (5.∞)2 | (5.ni)2 |
Rhombic figures |
||||||||
Config. | V(5.3)2 | V(5.4)2 | V(5.5)2 | V(5.6)2 | V(5.7)2 | V(5.8)2 | V(5.∞)2 | V(5.∞)2 |
gollark: !tr 10
gollark: LyricLy actually uses unicode homoglyph abuse for esobot typerace.
gollark: Or, well, that some specific forms did that.
gollark: I did in fact know of the existence of normalization, just not that it did that.
gollark: Yes.
See also
Wikimedia Commons has media related to Uniform tiling 5-i-5-i. |
- List of uniform planar tilings
- Tilings of regular polygons
- Uniform tilings in hyperbolic plane
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.