2

2 (two) is a number, numeral, and glyph. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures.

1 2 3
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinaltwo
Ordinal2nd (second / twoth)
Numeral systembinary
Factorizationprime
Gaussian integer factorization
Prime1st
Divisors1, 2
Greek numeralΒ´
Roman numeralII, ii
Greek prefixdi-
Latin prefixduo- bi-
Old English prefixtwi-
Binary102
Ternary23
Quaternary24
Quinary25
Senary26
Octal28
Duodecimal212
Hexadecimal216
Vigesimal220
Base 36236
Greek numeralβ'
Arabic, Kurdish, Persian, Sindhi, Urdu٢
Ge'ez
Bengali
Chinese numeral二,弍,貳
Devanāgarī
Telugu
Tamil
Kannada
Hebrewב
Japanese numeral二/弐
Khmer
Korean이,둘
Thai

Evolution of the glyph

The glyph used in the modern Western world to represent the number 2 traces its roots back to the Indic Brahmic script, where "2" was written as two horizontal lines. The modern Chinese and Japanese languages still use this method. The Gupta script rotated the two lines 45 degrees, making them diagonal. The top line was sometimes also shortened and had its bottom end curve towards the center of the bottom line. In the Nagari script, the top line was written more like a curve connecting to the bottom line. In the Arabic Ghubar writing, the bottom line was completely vertical, and the glyph looked like a dotless closing question mark. Restoring the bottom line to its original horizontal position, but keeping the top line as a curve that connects to the bottom line leads to our modern glyph.[1]

In fonts with text figures, 2 usually is of x-height, for example, .

In mathematics

An integer is called even if it is divisible by 2. For integers written in a numeral system based on an even number, such as decimal, hexadecimal, or in any other base that is even, divisibility by 2 is easily tested by merely looking at the last digit. If it is even, then the whole number is even. In particular, when written in the decimal system, all multiples of 2 will end in 0, 2, 4, 6, or 8.

Two is the smallest prime number, and the only even prime number (for this reason it is sometimes called "the oddest prime").[2] The next prime is three. Two and three are the only two consecutive prime numbers. 2 is the first Sophie Germain prime, the first factorial prime, the first Lucas prime, and the first Ramanujan prime.[3]

Two is the third (or fourth) Fibonacci number.

Two is the base of the binary system, the numeral system with the fewest tokens allowing to denote a natural number n substantially more concise (log2 n tokens), compared to a direct representation by the corresponding count of a single token (n tokens). This binary number system is used extensively in computing.

For any number x:

x + x = 2 · x addition to multiplication
x · x = x2 multiplication to exponentiation
xx = x↑↑2 exponentiation to tetration

Extending this sequence of operations by introducing the notion of hyperoperations, here denoted by "hyper(a,b,c)" with a and c being the first and second operand, and b being the level in the above sketched sequence of operations, the following holds in general:

hyper(x,n,x) = hyper(x,(n + 1),2).

Two has therefore the unique property that 2 + 2 = 2 · 2 = 22 = 2↑↑2 = 2↑↑↑2 = ..., disregarding the level of the hyperoperation, here denoted by Knuth's up-arrow notation. The number of up-arrows refers to the level of the hyperoperation.

Two is the only number x such that the sum of the reciprocals of the powers of x equals itself. In symbols

This comes from the fact that:

Powers of two are central to the concept of Mersenne primes, and important to computer science. Two is the first Mersenne prime exponent.

Taking the square root of a number is such a common mathematical operation, that the spot on the root sign where the exponent would normally be written for cubic and other roots, may simply be left blank for square roots, as it is tacitly understood.

The square root of 2 was the first known irrational number.

The smallest field has two elements.

In a set-theoretical construction of the natural numbers, 2 is identified with the set {{∅},∅}. This latter set is important in category theory: it is a subobject classifier in the category of sets.

Two also has the unique property such that

and also

for a not equal to zero

In any n-dimensional, euclidean space two distinct points determine a line.

For any polyhedron homeomorphic to a sphere, the Euler characteristic is χ = VE + F = 2, where V is the number of vertices, E is the number of edges, and F is the number of faces.

In science

Other

International maritime signal flag for 2

In pre-1972 Indonesian and Malay orthography, 2 was shorthand for the reduplication that forms plurals: orang "person", orang-orang or orang2 "people". In Astrology, Taurus is the second sign of the Zodiac.

gollark: I can't get around that.
gollark: No, it does.
gollark: - PotatOS uses a single global process manager instance for nested potatOS instances. The ID is incremented by 1 each time a new process starts.- But each nested instance runs its own set of processes, because I never made them not do that and because without *some* of them things would break.- PotatOS has a "fast reboot" feature where, if you reboot in the sandbox, instead of *actually* rebooting the computer it just reinitializes the sandbox a bit.- For various reasons (resource exhaustion I think, mostly), if you nest it, stuff crashes a lot. This might end up causing some of the nested instances to reboot.- When they reboot, some of their processes many stay online because I never added sufficient protections against that because it never really came up.- The slowness is because each event goes to about 200 processes which then maybe do things.
gollark: WRONG!
gollark: It doesn't reuse already allocated IDs.

References

  1. Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer transl. David Bellos et al. London: The Harvill Press (1998): 393, Fig. 24.62
  2. John Horton Conway & Richard K. Guy, The Book of Numbers. New York: Springer (1996): 25. ISBN 0-387-97993-X. "Two is celebrated as the only even prime, which in some sense makes it the oddest prime of all."
  3. "Sloane's A104272 : Ramanujan primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-01.
  4. "Double-stranded DNA". Scitable. Nature Education. Retrieved 2019-12-22.
  5. "The Complete Explanation of the Nuclear Magic Numbers Which Indicate the Filling of Nucleonic Shells and the Revelation of Special Numbers Indicating the Filling of Subshells Within Those Shells". www.sjsu.edu. Retrieved 2019-12-22.
  6. Bezdenezhnyi, V. P. (2004). "Nuclear Isotopes and Magic Numbers". Odessa Astronomical Publications. 17: 11. Bibcode:2004OAP....17...11B.
  7. "Asteroid Fact Sheet". nssdc.gsfc.nasa.gov. Retrieved 2019-12-22.
  8. Staff (2018-01-17). "Binary Star Systems: Classification and Evolution". Space.com. Retrieved 2019-12-22.
  9. Lewis, Tanya (2018-09-28). "Human Brain: Facts, Functions & Anatomy". livescience.com. Retrieved 2019-12-22.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.