Rotzo Formation

The Rotzo Formation is a geological formation in Italy, dating to roughly between 189 and 183 million years ago and covering the Pliensbachian stage of the Jurassic Period in the Mesozoic Era.[2] Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the whole Pliensbachian.[3]

Rotzo Formation
Stratigraphic range: Early-late Pliensbachian
~184 Ma
Exposed layer
TypeGeological formation
Unit ofCalcari Grigi Group
Sub-unitsBellori outcrop, Monte Pasubio, Roverè di Velo
Tracksites:
Marocche di Dro, Coste dell'Anglone, Bella Lasta
UnderliesCalcari Grigi di Noriglio Formation
OverliesMonte Zugna Formation
Lithology
PrimaryLagoonal or restricted shallow subtidal; lithified, gray, silty marl. Paralic; ooidal, gray grainstone and bioturbated, intraclastic, ooidal, gray wackestone. Subtidal flat with mud banks and sand deposits.[1]
OtherLight-grey to yellowish-grey packstone, with oolites, bioclasts, algal lumps, pellets, dasycladacean algae, foraminifera, lituolids, and miliolids
Location
Coordinates45.7°N 11.1°E / 45.7; 11.1
Approximate paleocoordinates32.1°S 16.7°E / -32.1; 16.7
RegionVeneto
Country Italy
Type section
Named forRotzo
Rotzo Formation (Italy)

Fossil prosauropod tracks have been reported from the formation.[4] This formation was deposited within a tropical lagoon environment which was protected by oolitic shoals and bars from the open deep sea located to the east (Belluno Basin) and towards the west (Lombardia Basin). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus Lithiotis, described in the second half of the nineteenth century. The unusual shape of Lithiotis and Cochlearites shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate.[5] The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimés fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness.[6][7]

Invertebrata

Microfossils of the Rotzo Formation consist of benthic foraminifera, calcareous algae, Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily Lituolacea (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare.[8] The bivalve Opisoma excavatum is very common.[9]

Ichnofossils

In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several 100 m thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member.[10] On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found aren't closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca.[10] Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate.[10]

Genus Species Stratigraphic position Material Notes Images

Thalassinoides[11][12][13][10][14]

  • Thalassinoides suevicus
  • Thalassinoides? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Thalassinoides suevicus has been found on mostly of the middle-upper part of the Rotzo Formation associated with muddy deposits. It ranges from 2–5 cm to 6–10 cm and the larger ones from 10–16 cm.[11] Y-shaped tunnels that seen in cross-section reveal circular walls made of pelletoidal grainstone, being more probably a fodichnia of a burrowing animal.[13] A few ichnofossils include simple cylindrical tubes up to 80 cm in length, that resemble crustacean described in Seychelles.[13]

Thalassinoides

Ophiomorpha[11][12][13][10]

  • Ophiomorpha irregulaire
  • cf. Ophiomorpha nodosa
  • Ophiomorpha isp. A
  • Ophiomorpha ? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Two major types of Ophiomorpha where recovered, a smaller one from 2–4 cm in size and the larger one from 5–15 cm in diameter.[13] They are complex burrow systems lined with pelletoidal sediments generally infilled by coarse-grained detritus.[11] isp. A seem partly destroyed by weathering.[12]

Ophiomorpha

Chondrites[11][12][13][10]

  • Chondrites isp.

Campomolon, Valbona

Burrowing and track Ichnofossils

In the Rotzo Formation Ophiomorpha irregulaire local specimens the walls are extensively reworked by small, secondary burrowers assigned to the ichnogenus Chondrites.[12] Interpreted as the feeding burrow of a sediment-ingesting animal.

Chondrites
Bioturbación Bioturbation (528634260).jp

Skolithos[10]

  • Skolithos isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skelletal debris

Ichnofossils done by organisms advancing along the bottom surface. Very narrow, vertical or subvertical, slightly winding unlined shafts filled with mud. Locally, post hurricane burrows are found in fine-grained tempestite beds and muddy layers and they are Domichnia, Fodinichnia and Chemichnia.[10]

Skolithos

Glossifungites[10]

  • Glossifungites isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skelletal debris

On the local waters during the Lower Jurassic, water motion due to the hurricane action truncated many mounds causing changes on the deposition on the sea-floor and inducing various phases of substrate infillings with carbonate mud, fine-to coarse-grained skeletal debris and fecal pellets.[10] They are assigned to Priapulida, Serpulidae, Siboglinidae, Sabellidae or even Oweniidae.

Chomatichnus[10]

  • Chomatichnus wegberensis

Campomolon, Valbona

Vertical burrows with preserved entrances

It is difficult to suggest this ichnogenus because on the Formation the vertical and lined burrow with a deep central crater typical of Chomatichnus is never preserved.[10] It resemble described burrows of endobenthic thalassinidean decapods, specially Callianassa subterranea of modern North Sea, Callianassa major, Callianassa californensis or Upogebia pugettensis.[10] It can be also Serpulidae Polychaetan burrows.

Ammonoidea

Genus Species Stratigraphic position Material Notes Images

Juraphyllites[15]

Juraphyllites libertus

Contrada Ronchi (Recoaro Terme, Vicenza)

Shells of different sizes.[15]

Type member of the family Juraphyllitidae. It is the most abundant Ammonite found on the Rotzo Formation

Juraphyllites (G)

Fuciniceras[15][16]

  • Fuciniceras suejense
  • Fuciniceras portisi

Shells of different sizes.[15]

An Ammonite of the Family Hildoceratidae

Fuciniceras

Protogrammoceras[16]

Protogrammoceras sp.

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Hildoceratidae.

Ugdulenaia[16][17]

Ugdulenaia cf. ugdulenai

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Hildoceratidae.

Partschiceras[16]

Partschiceras anonimum

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Phylloceratidae.

Charmasseiceras[15]

Charmasseiceras sp.

Serrada (Folgaria, Trento)

Shells of different sizes.[15]

An Ammonite of the family Schlotheimiidae. A very rare genus on the layers of the formation, being found only a few specimens.

Gasteropoda

Genus Species Stratigraphic position Material Notes Images

Neritopsis[18]

Neritopsis fabianii

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail), type genus of the Family Neritopsidae inside Cycloneritimorpha.

Guidonia[18]

Guidonia pseudorotula

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail) of the Family Trochonematidae inside Murchisoniina.

Pseudorhytidopilus[18]

Pseudorhytidopilus detonii

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Limpet) of the Family Acmaeidae inside Patellogastropoda.

Proacirsa[18]

Proacirsa (Schafbergia) crenata

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail) of the Family Gordenellidae inside Allogastropoda.

Discohelix[18]

Discohelix excavata

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail), type genus of the Family Discohelicidae inside Vetigastropoda.

Eucyclidae[18]

Eucyclidae Indeterminate

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail) of the Family Eucyclidae inside Seguenzioidea.

Eucyclus[18]

Eucyclus (Lokuticyclus) kericserensis

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail), type genus of the Family Eucyclidae inside Seguenzioidea.

Austriacopsis[18]

Austriacopsis austriaca

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail) of the Family Fissurellidae inside Fissurelloidea.

Emarginula[18]

Emarginula (Emarginula) vadanaei

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail) of the Family Fissurellidae inside Fissurelloidea.

Anticonulus[18]

Anticonulus acutus

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Top Snail) of the Family Trochidae inside Trochoidea.

Plectotrochus[18]

Plectotrochus sp.

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Top Snail) of the Family Trochidae inside Trochoidea.

Ataphrus[18]

*Ataphrus (Ataphrus) latilabrus *Ataphrus (Ataphrus) cordevolensis

Certosa di Vedana

Shells of different sizes.[18]

A Marine Gasteropod (Snail), type genus of the Family Ataphridae inside Trochoidea.

Thylacocephala

Genus Species Stratigraphic position Material Notes Images

Rugocaris[19]

  • Rugocaris indunensis
  • Calcari a Cefalopodi (Induno Olona)

Medium-sized bivalved carapace

A Concavicaridan Thylacocephalan. This specimen is a rathin rare case where there was the discover of a Thylacocephalan specimen in a rock deposed in a well oxigenated environment, while other finds come mostly from were from anaerobic environments.[19] Rugocaris lived in an epibathyal environment.[19]

Crustacea

Genus Species Stratigraphic position Material Notes Images

Pustulina[12]

Pustulina sp.

Valbona Area

Chelae

An Erymidae Decapodan. There is a frequent presence of Thalassinoides burrows associated with Pustulina body fossils.[12]

Pustulina

Phlyctisoma[12]

Phlyctisoma sinemuriana

Valbona Area.[12]

Slightly deformed Exuvia

An Erymid Decapodan Crustacean common on In mediterranean rocks. With a rostrum about 1.3 cm long and the cephalic part of carapace about 2.5 cm the specimen probably reached a total length between 9 and 10n cm, being one of the largest specimens belonging to this genus. Frequent association with Thalassinoides burrows. A complete seafloor section was fossilized.[12][11]

Phraterfabanella[20]

Phraterfabanella tridentinensis

Tonezza del Cimone.[20]

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The assemblage is dominated (>95%) by this taxon.[20] It is a rather Medium-sized Ostracodan and markedly sexually dimorphic (males more elongate and more subrectangular versus shorter, more inflated and more subtriangular females).[20] it is likely that the palaeoenvironment was somewhat "stressed" and probably influenced by Salinity, where this genus would adapt better that Other Ostracodans (is related to the modern euryhaline species, Cyprideis torosa).[20]

Klieana[20]

Klieana sp.

Tonezza del Cimone.[20]

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The earliest record of the genus, the next youngest records of the genus are from Middle Jurassic sequences of France and Great Britain.[20]

Limnocythere[20]

Limnocythere sp.

Tonezza del Cimone.[20]

Valves

An Ostracodan of the family Limnocytherinae inside Cytheracea. High probability to be a new species of Limnocythere since the authors know of no other with similar posterolateral sulcation.[20]

Vertebrata

Chondrichthyes

Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth.[10] It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae.[10] It also resembles present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos.[10]

Genus Species Stratigraphic position Material Notes Images

Orthacodus[16][19]

Orthacodus sp

  • Calcari a Cefalopodi (Induno Olona)

Teeth

A Shark, type genus of the family Orthacodontidae inside Synechodontiformes. The teeth recovered resemble Orthacodus longidens, and are related to an epibathyal environment, near to a major carbonate platform shelf.

Hybodus[21]

Hybodus sp.

  • Trento

First dorsal fin spine

A Shark, type genus of the family Hybodontidae inside Hybodontiformes. A very prolific genus, found mostly on open marine units.

Actinopterygii

Unidentified fish scales are known from the formation.[22]

Genus Species Stratigraphic position Material Notes Images

Semionotiformes[23][22][21]

Semionotiformes Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

The assigned teeth where found on a layer referred to a Carbonate Platform nearshore section, probably a Lagoonar Environment, where fhis and marine crocodrylomorphs live.

Pycnodontiformes [23][22][21]

Pycnodontiformes indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Fragmentary Remains

Teleostei Fishes of small size, related to lagoonar environments

Pholidophoriformes [23][22][21]

Pholidophoriformes Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Complete Specimen
  • Referred Fragmentary remains

Teleostei fishes, with genera know to form large Fish schools.

Crocodyliformes

Genus Species Location Material Notes Images

Teleosauridae?[23][22]

Teleosauridae? Indeterminate

Monte Pasubio

Teeth.[24][23]

A Thalattosuchian Mesoeucrocodylian. It was cited the presence of fragmentary and poorly preserved remains of “Teleosauridae?”. There are at least two morphotypes, implying two genera or two species. The fossils were found on lagoonal deposits.[22]

Example of Thallatosuchian, Steneosaurus

aff. Eopneumatosuchus[24][23]

aff. Eopneumatosuchus sp.

Monte Pasubio

Partial skull and teeth.[23]

A basal crocodyliform. Was originally thought to be Thalattosuchian remains. Has been compared recently with Eupneumatosuchus, is a member of the genus or a closely related species.

Metasuchia[24][23]

Metasuchia Indeterminate

Monte Pasubio

Upper jaw with rounded teeth.[23]

A basal crocodyliform. It has rouded teeth that suggest a Duriphagous Diet.

Dinosaurs

On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves.[25] Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve Eomiodon.[25] This was deposited mostly on a Lagoonar environment with abundant shed vegetation.[25] The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the Otozum-like Sauropodomorphs of lower levels, with the climate changing from arid to humid.[25]

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Dinosaurs of the Rotzo Formation
Genus Species Location Member Material Notes Images

Moyenisauropus[26][27]

Moyenisauropus sp.

  • Marocche di Dro tracksite

Footprints

Is considered synonymous with the ichnogenus Anomoepus. The tracks adscribed share some morphological affinity with those referred to the Ankylosauridae, such as the ichnogenera Metatetrapodus and Tetrapodosaurus, and probably belonged to medium-sized Scelidosaurs or other kind of Thyreophorans. Include Specimens of up to 30 cm, suggesting +4 m long scelidosauroids.

Anchisauripus[22][27]

  • Anchisauripus sp. A
  • Coste dell'Anglone tracksite

Footprints

Probably related to Coelophysidae, such as Procompsognathus and Panguraptor or Coelophysoidea, such as Lophostropheus. All tracks were probably produced by individuals with the same functional anatomy of the hind foot.[25]

Kayentapus[28][22][27]

  • Kayentapus sp. A
  • Kayentapus sp. B
  • Coste dell'Anglone tracksite
  • Bella Lasta tracksite
  • Stol dei Campiluzzi tracksite

Footprints

Includes Kayentapus sp. assigned to Sinosaurus-alike Theropods, but on the Rotzo Formation include also Abelisauroid-like tracks, similar to the foot of the genus Velocisaurus.[22] The tracks measure 30 cm long and have a distinctive robust digit III.[25]

Parabrontopodus[29]

Parabrontopodus sp. A Parabrontopodus sp. B

  • Marocche di Dro tracksite
  • Bella Lasta tracksite

Footprints

Tracks from large basal members of Sauropoda. The larger tracks compirse elliptic pes (L=70 cm; W=50 cm) and subcirluar manus prints (L=33 cm; W=30 cm), what are among the largest know dinosaur tracks of the lower jurassic.[25] While nearly destroyed, the Tracks resemble the foot of the genus Gongxianosaurus, but also Barapasaurus. There is a type B of Parabrontopodus slightly smaller that resemble te genus Vulcanodon.

Flora

There are abundant fossils of freshwater algae, like Botryococcus and Pseudoschizaea.[30]

Amber

Genus Species Location Stratigraphic position Material Notes

Amber[31]

Non Assignable Species

Bellori village

Amber Fragments

The Lessini Mountains Amber represents the first report of Jurassic amber from Italy and one of the very few in the world. Due to being composed by drops of less than 1 mm with preserved exceptionally intact morphologies the Bellori amber was probably neither environmentally stressed nor affected by diseases.[31] While no animal remains were found inside the Bellori Amber so far there are various traces of very small (< 1 mm) vegetal fragments, here identified as tissue remains of wood and “mummified wood”.[31] It has also a large amount of Circumpolles (Cheirolepidiaceae), and in some fragments there are traces of the freshwater algae Pseudoschizaea.[31] Although several cuticles found in Bellori could be attributed to Pagiophyllum (Araucariaceae).[31] Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia.[31]

Palynology

Genus Species Location Stratigraphic position Material Notes

Accincitisporites[32][33]

Accincitisporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Unknown affinities

Alisporites[32]

Alisporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Voltzia (Willsiostrobus), Corystospermales, Ginkgoopsida (Pelataspermales), Coniferopsida (Podocarpaceae, Ulmanniaceae, Voltziales).[31]

Aratrisporites[32]

Aratrisporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycophytes, in situ in Cyclostrobus, Lycostrobus and Annalepis zeiller.[31]

Auritulinasporites[32]

Auritulinasporites scanicus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridophyta.[31]

Baculatisporites[32]

Baculatisporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridopsida.[31]

Calamospora[32]

Calamospora sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Sphenopsida.[31]

Camarozonosporites[32]

Calamospora sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopsida.[31]

Cabochonicus[32]

cf. Cabochonicus carbunculus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[33]

Affinities with Selaginellaceae

Chasmatosporites[32]

Chasmatosporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopsida.[31]

Classopollis[32]

  • Classopollis sp
  • Classopollis classoides
  • Classopollis meyeriana
  • Classopollis torosus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[31]

Affinities with Cheirolepidiaceae.[31]

Concavisporites[32]

  • Concavisporites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridophyta.[31]

Cycadopites[32]

  • Cycadopites sp

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Cycadophyta.[31]

Deltoidospora[32]

  • Deltoidospora minor
  • Deltoidospora sp.
  • Deltoidospora toralis

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycophyta.[31]

Densosporites[32]

  • Densosporites sp.
  • Densosporites fissus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycophyta.[31]

Eucommidites[32]

  • Eucommidites troedssoni

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Cycadales.[31]

Foveosporites[32]

  • Foveosporites sp.
  • Foveosporites visscheri

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Selaginellaceae.[31]

Granuloperculatipollis[32]

  • Granuloperculatipollis sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[31]

Affinities with Selaginellaceae.[31]

Horstisporites[32]

Horstisporites harrisii

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[33]

Affinities with Selaginella-like

Hughesisporites[32]

cf. Hughesisporites orlowskae

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[33]

Affinities with Lycophyta

Ischyosporites[32]

  • Ischyosporites sp.
  • Ischyosporites variegatus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridopsida.[31]

Leptolepidites[32]

  • Leptolepidites sp.
  • Leptolepidites cf. major

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopsida.[31]

Limbosporites[32]

  • Limbosporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopsida.[31]

Lycopodiacidites[32]

  • Lycopodiacidites sp.
  • Lycopodiacidites regulatus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopsida.[31]

Lycopodiumsporites[32]

  • Lycopodiumsporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopsida.[31]

Monosulcites[32]

  • Monosulcites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridopsida.[31]

Perinopollenites[32]

  • Perinopollenites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[31]

Affinities with Gymnospermophyta.[31]

Pinuspollenites[32]

  • Pinuspollenites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[31]

Affinities with Pinales.[31]

Retitriletes[32]

  • Retitriletes semimuris

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopodiaceae.[31]

Retusotriletes[32]

  • Retusotriletes sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Lycopodiaceae.[31]

Skarbysporites[32]

  • Skarbysporites puntii
  • Skarbysporites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with freshwater green algae.[31]

Schizosporis[32]

  • Schizosporis cf. reticulates
  • Schizosporis sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Chlorophyta.[31]

Spheripollenites[32]

  • Spheripollenites sp.

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen.[31]

Affinities with Chlorophyta.[31]

Tigrisporites[32]

  • Tigrisporites sp.
  • Tigrisporites jonkeri

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Filicales.[31]

Todisporites[32]

  • Todisporites sp.
  • Todisporites minor

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridopsida.[31]

Trachysporites[32]

  • Trachysporites fuscus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Pteridopsida.[31]

Trileites[32]

cf. Trileites murrayi

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[33]

Affinities with Selaginellaceae

Verrutriletes[32]

cf. Verrutriletes compostipunctatus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[33]

Affinities with Selaginellaceae

Vitreisporites[32]

  • Vitreisporites pallidus

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Spores.[31]

Affinities with Gymnospermophyta.[31]

Plant remains

Genus Species Location Stratigraphic position Material Notes Images

Equisetites[34][35][36][37]

  • Equisetites bunburyanus
  • Equisetites veronensis
  • Grey limestones of Veneto

Stems

Affinities with Equisetaceae inside Polypodiopsida. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate.

Phyllotheca[34][35][36][37]

  • Phyllotheca brongniartiana
  • Grey limestones of Veneto

Leaf Whorl

Affinities with Phyllothecaceae inside Equisetales

Protorhipis[34][35][36][37]

  • Protorhipis asarifolia
  • Grey limestones of Veneto

Fronds

Affinities with Dipteridaceae inside Gleicheniales. A rather lower Fern, with great resemblance with the modern genus Dipteris

Matonidium[34][35][36][37]

  • Matonidium rotzoana
  • Grey limestones of Veneto

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria[34][35][36][37]

  • Marzaria paroliniana
  • Grey limestones of Veneto

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Phlebopteris[34][35][36][37]

  • Phlebopteris polypodioides
  • Grey limestones of Veneto

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Dictyophyllum[34][35][36][37]

  • Dictyophyllum sp.
  • Grey limestones of Veneto

Fronds

Affinities with Dipteridaceae inside Gleicheniales.

Gleichenites[34][35][36][37]

  • Gleichenites elegans
  • Grey limestones of Veneto

Fronds

Affinities with Polypodiales inside Polypodiopsida

Sphenopteris[34][35][36][37]

  • Sphenopteris leckenbyi
  • Grey limestones of Veneto

Fronds

Affinities with Lyginopteridopsida inside Lyginopteridales

Cyclopteris[34][35][36][37]

  • Cyclopteris minor
  • Grey limestones of Veneto

Fronds

Affinities with Cyclopteridaceae inside Pteridospermatophyta.

Cycadopteris[34][35][38]

  • Cycadopteris brauniana
  • Cycadopteris heerii
  • Grey limestones of Veneto
  • Roverè di Velo
  • Albaredo

Fronds

Affinities with Corystospermales inside Pteridospermopsida. On the Roverè di Velo collection, C. brauniana is the most common Frond found. The Fronds belong to medium to large Arboreal Ferns.

Cycadopteris brauniana and Cycadopteris sp., both recovered from different locations of the Rotzo Formation

Dichopteris[34][35][36][37][38]

  • Dichopteris cf. rhomboidalis
  • Dichopteris visianica
  • Roverè di Velo
  • Grey limestones of Veneto

Fronds

Affinities with Corystospermales inside Pteridospermopsida. This frons genus has been Synonymized with Pachypteris , but it clearli differs due to the presence of odontopteridian pinnules, while Pachypteris has pinnules of the sphenopteridian type. Related to Arboreal Ferns.

Dichopteris visianica from the Rotzo Formation

Pseudosagenopteris[34][35][36][37]

  • Pseudosagenopteris angustifolia
  • Grey limestones of Veneto

Leaflets

Affinities with Caytoniales inside Pteridospermopsida.

Sagenopteris[34][35][38]

  • Sagenopteris goeppertiana
  • Sagenopteris nilssoniana
  • Roverè di Velo
  • Grey limestones of Veneto

Leaflets

Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assigantion to S. goeppertiana, and du to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material.

Sphenozamites[34][35][36][37]

  • Sphenozamites rossii
  • Sphenozamites sp.

Grey limestones of Veneto

Leaflets

Affinities with Bennettitales inside Cycadeoidopsida. Related with Cycad-like trees.

Weltrichia[34][35][36][37]

  • Weltrichia sp.

Grey limestones of Veneto.

Reproductive structure

Affinities with Bennettitales inside Cycadeoidopsida. Weltrichia is considered by some authors some kind of Bennetitalean Flower, putting that group on relationships with the Angiosperms.

?Pterophyllum[34][35][36][37]

  • Pterophyllum sp.
  • cf. Pterophyllum platyrachis

Grey limestones of Veneto.

Leaflets

Affinities with Bennettitales inside Cycadeoidopsida. This genus has been related with the more arboreal family Williamsoniaceae, altrought is more probably from a low arboreal to arbustive Bennetite.

Otozamites[34][35][36][37][38]

  • Otozamites bunburyanus
  • Otozamites cf. bunburyanus ?
  • Otozamites feistmantelii
  • Otozamites molinianus
  • Otozamites massalongianus
  • Otozamites sp.
  • Roverè di Velo
  • Grey limestones of Veneto.

Pinnate leaf fragments

Affinities with Bennettitales inside Cycadeoidopsida. Overall, the genus Otozamites is among the most abundant flora genus recovered on some of the levels of the Rotzo Formation, and also one of the most diversified. It belongs to arbustive Bennetites.

Otozamites bunburyanus from the Rotzo Formation

Ptilophyllum[34][35][36][37][38]

  • Ptilophyllum grandifolium
  • Ptilophyllum triangulare
  • Ptilophyllum sp
  • Roverè di Velo
  • Grey limestones of Veneto.

Leaves

Affinities with Bennettitales. Was previously ascribed by Guiscardi (Director of the Geology Department of the Napoles University between 1861 al 1885) to Pachypteris visianica and Cycadopteris brauniana.

Ptilophyllum grandifolium from the Rotzo Formation

Trevisania[34][35][36][37]

  • Trevisania furcellata
  • Grey limestones of Veneto

Leaves

Affinities with the genus Trichopitys, as probably a member of Ginkgoales inside Ginkgoopsida.

Desmiophyllum[34][35][38]

  • Desmiophyllum zeillerianum
  • Desmiophyllum rigidum

Roverè di Velo

Incomplete leaves

Affinities with Ginkgoaceae inside Ginkgoales. Was assigned the Podozamites genus and named them Podozamites zeillerianus.

Stachyotaxus[34][35][36][37]

  • Stachyotaxus sp.

Grey limestones of Veneto.

Branched shoots

Affinities with Palyssia-like, a ganus that has been related to the fossil wood Phyllocladoxylon, being probably Fronds of the Podocarpaceae family.

Dactylethrophyllum[34][35][36][37][38]

  • Dactylethrophyllum peristictum
  • Roverè di Velo
  • Grey limestones of Veneto.

Branched shoots

Affinities with Pinaceae inside Pinales. This genus resembles the modern Abies, with similar distribution of the leaves.

Elatocladus[34][35][36][37]

  • cf. Elatocladus sp

Grey limestones of Veneto.

Branched shoots

Affinities with Podocarpaceae inside Coniferales.

Brachyphyllum[34][35][36][37][38]

  • Brachyphyllum tropidimorphyrn
  • Roverè di Velo
  • Grey limestones of Veneto.

Branched shoots

Affinities with Araucariaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest.[39]

Pagiophyllum[34][35][38]

  • Pagiophyllum rotzoanum
  • Pagiophyllum cf. veronense
  • Pagiophyllum valdassense

Roverè di Velo

Leaves

Affinities with Araucariaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot.

Pagiophyllum rotzoanum from the Rotzo Formation

Indeterminate Specimen[34][35][38]

  • Indeterminate

Roverè di Velo

Nearly complete pinna

Due to the bad preservation of specimen no systematic attribution is possible.

gollark: https://media.discordapp.net/attachments/549759333014044673/775778508013305886/unknown.png
gollark: It looks like just combining diacritic abuse.
gollark: Am I missing something here? Is this some sort of Chrome-specific bug?
gollark: Oh, cool!
gollark: https://2.bp.blogspot.com/-z297dPAK-VE/WnxTYYfBIgI/AAAAAAAACxc/qSbDgjH-BZwdZMnXhWYkMvmH0yrqbXsPACLcBGAs/s640/Push_www-scarfolk-blogspot-com.jpg

See also

Bibliography

  1. https://paleobiodb.org/classic/basicCollectionSearch?collection_no=88592
  2. Broglio Loriga, C., & Neri, C. (1976). Aspetti paleobiologici e paleogeografici delle facies “Lithiotis” (Giurese inf.) Rivista Italiana di Paleontologia e Stratigrafia, 82, 651–151.
  3. Franceschi, M., Dal Corso, J., Posenato, R., Roghi, G., Masetti, D., & Jenkyns, H. C. (2014). Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 255–263. doi:10.1016/j.palaeo.2014.05.025
  4. P. Mietto, G. Roghi, and R. Zorzin. 2000. Le impronte di dinosauri liassici dei Monti Lessini Veronesi [The Liassic dinosaur tracks from the Veronese Monti Lessini]. Bollettino del Museo Civico di Storia Naturale di Verona. Geologia Paleontologia Preistoria 24:55-72
  5. MASETTI D; POSENATO R; BASSI D.; FUGAGNOLI A (2005) The Rotzo Formation (Lower Jurassic) at the Valbona Pass (Vicenza Province). STAMPA
  6. Cyclical variation in paleoenvironments of the Rotzo formation (Lower Jurassic, Lessini Mts., N Italy) / Neri, Mirco; Papazzoni, Cesare Andrea; Vescogni, Alessandro; Roghi, Guido. - STAMPA. - (2015), pp. 74-75. ((Intervento presentato al convegno Tenth Romanian Symposium on Paleontology tenutosi a Cluj-Napoca, Romania nel 16–17 October 2015.
  7. Urban, I. (2017). Petrografia e geochimica delle ooliti del Giurassico inferiore della Piattaforma di Trento.
  8. Monaco, P., & Giannetti, A. (2001). Stratigrafia tafonomica nel Giurassico inferiore dei Calcari Grigi della Piattaforma di Trento. Atti Ticinensi di Scienze della Terra, 42, 175-209.
  9. R. Posenato. 2013. Opisoma excavatum Boehm, a Lower Jurassic photosymbiotic alatoform-chambered bivalve. Lethaia 46:424-437
  10. Monaco, P., & Giannetti, A. (2002). Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy). Facies, 47(1), 57-82.
  11. MONACO P. (2000). Decapod burrows (Thalassinoides, Ophiomorpha) and crustacean remains in the Calcari Grigi, lower Jurassic, Trento platform (Italy). 1st Workshop on Mesozoic and Tertiary decapod crustaceans, Studi e Ricerche, Associazione Amici del Museo Civico “G.Zannato” Montecchio Maggiore (Vicenza), October 6–8, 2000, pp.55-57
  12. A. Garassino and M. Monaco. 2000. Burrows and body fossil of decapod custaceans i the Calcari Grigi, Lower Jurassic, Treno Platform (Italy)
  13. MONACO P. & GARASSINO A. (2001). Burrowing and carapace remains of crustacean decapods in the Calcari Grigi, Early Jurassic, Trento platform. Geobios, 34 (3), 291-301.
  14. Giannetti, A., Monaco, P., Caracuel Martín, J. E., Soria Mingorance, J. M., & Yébenes Simón, A. (2007). Functional morphology and ethology of decapod crustaceans gathered by Thalassinoides branched burrows in Mesozoic shallow water environments.
  15. P. Mietto. 1985. Ammoniti nella Piattaforma liassica Veneta. Rivista Italiana di Paleontologia e Stratigrafia 91(1):3-14
  16. HAAS, O., 191 3 - Die Fauna des mittleren Lias von Ballino im Sudtirol: Beitr. Paldont. Geol. Osterr.-Ungam u Orient, 26, 1-161. MCNAMARA, K.J. , 198 6 - A guide to the nomenclature of heterochrony: Journal of Pal., 60 (1), 4-13
  17. CASTELLI, M. (1980). Ammoniti del Pliensbachiano della collezione paleontologica del Museo civico di storia naturale di Brescia. Natural Disaster Reduction in China, (1), 2.
  18. R. Gatto and S. Monari. 2010. Pliensbachian gastropods from Venetian Southern Alps (Italy) and their palaeobiogeographical significance. Palaeontology 53(4):771-802
  19. Tintori, A., Bigi, E., Crugnola, G., & Danini, G. (1986). A new Jurassic Thylacocephala Rugocaris indunensis gen. n. sp. n. and its paleoecological significance. Rivista Italiana di Paleontologia e Stratigrafia, 92(2), 239-250.
  20. Boomer, I., Whatley, R., Bassi, D., Fugagnoli, A., & Loriga, C. (2001). An Early Jurassic oligohaline ostracod assemblage within the marine carbonate platform sequence of the Venetian Prealps, NE Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 166(3-4), 331-344.
  21. Franceschi & Bernardi (2020). Vertebrate remains from the Rotzo Formation (Lower Jurassic, Trento Platform, Italy): preliminary note. Fossilia, Volume 2020: 25-27. https://doi.org/10.32774/FosRepPal.2020.0607 Fossilia - Reports in Palaeontology
  22. Petti, F. M., Bernardi, M., Todesco, R., & Avanzini, M. (2011). Dinosaur footprints as ultimate evidence for a terrestrial environment in the late Sinemurian trento carbonate platform. Palaios, 26(10), 601-606.
  23. Avanzini, M., 1998. Resti di vertebrati dal Giurassico inferiore della piattafor-ma di Trento (Italia settentrionale) Nota prelimiare. Studi Trentini diScienze Naturali. Acta Geologica 73 (1996)
  24. Avanzini M., 1998 – Resti di rettili continentali dal Giurassico inferiore della piattaforma di Trento (Italia settentrionale). Studi Trentini di Scienze Naturali - Acta Geologica, Trento, 73: 75-80
  25. GUIDOROGHI, R. (2006). LOWER JURASSIC (HETTANGIAN–SINEMURIAN) DINOSAUR TRACK MEGASITES, SOUTHERN ALPS, NORTHERN ITALY. The Triassic-Jurassic Terrestrial Transition: 37, 37, 207.
  26. M. Avanzini, G. Leonardi, R. Tomasoni and M. Campolongo. 2001. Enigmatic dinosaur trackways from the Lower Jurassic (Pliensbachian) of the Sarca Valley, northeast Italy. Ichnos 8:235-242
  27. Petti F.M., Avanzini M., Antonelli M., Bernardi M., Leonardi G., Manni R., Mietto P., Pignatti J., Piubelli D., Sacco E., Wagensommer A. 2020 (in press). Jurassic tetrapod tracks from Italy: a training ground for generations of researchers. In: Romano M., Citton P. (Eds.), Tetrapod ichnology in Italy: the state of the art. Journal of Mediterranean Earth Sciences 12, xx-xx.
  28. M. Avanzini and F. M. Petti. 2008. Updating the dinosaur tracksites from the Lower Jurassic Calcari Grigi Group (Southern Alps, northern Italy). Studi Trentini di Scienze Naturali, Acta Geologica 83:289-301
  29. Franceschi M., Martinelli M., Gislimberti L., Rizzi A., Massironi M. (2015) - Integration of 3D modeling, aerial LiDAR and photogrammetry to study a synsedimentary structure in the Early Jurassic Calcari Grigi (Southern Alps, Italy). European Journal of Remote Sensing, 48: . doi:
  30. Neri, M., Kustatscher, E., Roghi, G., & Papazzoni, C. A. (2016). Paleobotanical assemblage from the Lower Jurassic amber bearing levels from the Rotzo Formation, Monti Lessini (Venetian Prealps, Northern Italy). In The Micropaleontological Society, 5th Silicofossil and Palynology Joint Meeting (pp. 33-33). ITA.
  31. Neri, M., Roghi, G., Ragazzi, E. & Papazzoni, C. A. 2017. First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy). Geobios 50, 49–63.
  32. Van Erve, A.W., 1977. Palynological investigation in the Lower Jurassic of the Vicentinian Alps (Northeastern Italy). Review of Palaeobotany and Palynology 23, 1-117
  33. Neri, M., Kustatscher, E., & Roghi, G. (2018). Megaspores from the Lower Jurassic (Pliensbachian) Rotzo Formation (Monti Lessini, northern Italy) and their paleoenvironmental implications. In S. Slater, E. Kustatscher & V. Vajda, (Eds.), Jurassic biodiversity and terrestrial environments. Palaeobiodiversity and Palaeoenvironments, 98(1)
  34. De Zigno, A., 1856–1885. Flora fossilis formationis Oolithicae. Tipografia del Seminario di Padova, 1–2, 426pp.
  35. De Zigno, A., 1885. Flora fossilis formationis oolithicae. Vol. 2. Padova, Tip. Del Seminario.
  36. A. Wesley (1956) Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 1 Mem. Ist. Geol. Min. Univ. Padova, 19 , pp. 1-69
  37. A. Wesley (1958) Contributions to the knowledge of the flora of the Grey Limestones of Veneto, Part 2 Mem. Ist. Geol. Min. Univ. Padova, 21, pp. 1-57
  38. Bartiromo A. & Barone Lumaga M.R. (2009). Taxonomical revision of the Collection of Jurassic plants from Roverè di Velo (Veneto, northern Italy) stored in the Palaeontological Museum of the University of Naples “Federico II”. Bollettino della Società Paleontologica Italiana, 48: 1-13A.
  39. Krassilov, V. A. (1978). Araucariaceae as indicators of climate and paleolatitudes. Review of Palaeobotany and Palynology, 26(1-4), 113-124.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.