PSMB9

Proteasome subunit beta type-9 as known as 20S proteasome subunit beta-1i is a protein that in humans is encoded by the PSMB9 gene.[5][6][7]

PSMB9
Identifiers
AliasesPSMB9, LMP2, PSMB6i, RING12, beta1i, proteasome subunit beta 9, PRAAS3, proteasome 20S subunit beta 9
External IDsOMIM: 177045 MGI: 1346526 HomoloGene: 2094 GeneCards: PSMB9
Gene location (Human)
Chr.Chromosome 6 (human)[1]
Band6p21.32Start32,844,136 bp[1]
End32,859,851 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

5698

16912

Ensembl

ENSMUSG00000096727

UniProt

P28065

P28076

RefSeq (mRNA)

NM_002800
NM_148954

NM_013585

RefSeq (protein)

NP_002791

NP_038613

Location (UCSC)Chr 6: 32.84 – 32.86 MbChr 17: 34.18 – 34.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

This protein is one of the 17 essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and inducible subunits including beta1i, beta2i, beta5i) that contributes to the complete assembly of 20S proteasome complex. In particular, proteasome subunit beta type-5, along with other beta subunits, assemble into two heptameric rings and subsequently a proteolytic chamber for substrate degradation. This protein contains "Trypsin-like" activity and is capable of cleaving after basic residues of peptide.[8] The eukaryotic proteasome recognized degradable proteins, including damaged proteins for protein quality control purpose or key regulatory protein components for dynamic biological processes. The constitutive subunit beta1, beta2, and beta 5 (systematic nomenclature) can be replaced by their inducible counterparts beta1i, 2i, and 5i when cells are under the treatment of interferon-γ. The resulting proteasome complex becomes the so-called immunoproteasome. An essential function of the modified proteasome complex, the immunoproteasome, is the processing of numerous MHC class-I restricted T cell epitopes.[9]

Structure

Gene

The gene PSMB9 encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit. This gene is located in the class II region of the MHC (major histocompatibility complex). Expression of this gene is induced by gamma interferon and this gene product replaces catalytic subunit 1 (proteasome beta 6 subunit) in the immunoproteasome. Proteolytic processing is required to generate a mature subunit. Two alternative transcripts encoding different isoforms have been identified; both isoforms are processed to yield the same mature subunit.[7] The human PSMB9 gene has 6 exons and locates at chromosome band 6p21.3.

Protein

The human protein proteasome subunit beta type-9 is 21 kDa in size and composed of 199 amino acids. The calculated theoretical pI of this protein is 4.80.

Complex assembly

The proteasome is a multicatalytic proteinase complex with a highly ordered 20S core structure. This barrel-shaped core structure is composed of 4 axially stacked rings of 28 non-identical subunits: the two end rings are each formed by 7 alpha subunits, and the two central rings are each formed by 7 beta subunits. Three beta subunits (beta1, beta2, beta5) each contains a proteolytic active site and has distinct substrate preferences. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway.[10][11]

Function

Protein functions are supported by its tertiary structure and its interaction with associating partners. As one of 28 subunits of 20S proteasome, protein proteasome subunit beta type-2 contributes to form a proteolytic environment for substrate degradation. Evidences of the crystal structures of isolated 20S proteasome complex demonstrate that the two rings of beta subunits form a proteolytic chamber and maintain all their active sites of proteolysis within the chamber.[11] Concomitantly, the rings of alpha subunits form the entrance for substrates entering the proteolytic chamber. In an inactivated 20S proteasome complex, the gate into the internal proteolytic chamber are guarded by the N-terminal tails of specific alpha-subunit. This unique structure design prevents random encounter between proteolytic active sites and protein substrate, which makes protein degradation a well-regulated process.[12][13] 20S proteasome complex, by itself, is usually functionally inactive. The proteolytic capacity of 20S core particle (CP) can be activated when CP associates with one or two regulatory particles (RP) on one or both side of alpha rings. These regulatory particles include 19S proteasome complexes, 11S proteasome complex, etc. Following the CP-RP association, the confirmation of certain alpha subunits will change and consequently cause the opening of substrate entrance gate. Besides RPs, the 20S proteasomes can also be effectively activated by other mild chemical treatments, such as exposure to low levels of sodium dodecylsulfate (SDS) or NP-14.[13][14]

The 20S proteasome subunit beta-5i (systematic nomenclature) is originally expressed as a precursor with 276 amino acids. The fragment of 72 amino acids at peptide N-terminal is essential for proper protein folding and subsequent complex assembly. At the end-stage of complex assembly, the N-terminal fragment of beta5 subunit is cleaved, forming the mature beta5i subunit of 20S complex.[15] During the basal assembly, and proteolytic processing is required to generate a mature subunit. The subunit beta5i only presents in the immunoproteasome and is replaced by subunit beta5(proteasome beta 5 subunit) in constitutive 20S proteasome complex.

Clinical significance

The proteasome and its subunits are of clinical significance for at least two reasons: (1) a compromised complex assembly or a dysfunctional proteasome can be associated with the underlying pathophysiology of specific diseases, and (2) they can be exploited as drug targets for therapeutic interventions. More recently, more effort has been made to consider the proteasome for the development of novel diagnostic markers and strategies. An improved and comprehensive understanding of the pathophysiology of the proteasome should lead to clinical applications in the future.

The proteasomes form a pivotal component for the ubiquitin–proteasome system (UPS) [16] and corresponding cellular Protein Quality Control (PQC). Protein ubiquitination and subsequent proteolysis and degradation by the proteasome are important mechanisms in the regulation of the cell cycle, cell growth and differentiation, gene transcription, signal transduction and apoptosis.[17] Subsequently, a compromised proteasome complex assembly and function lead to reduced proteolytic activities and the accumulation of damaged or misfolded protein species. Such protein accumulation may contribute to the pathogenesis and phenotypic characteristics in neurodegenerative diseases,[18][19] cardiovascular diseases,[20][21][22] inflammatory responses and autoimmune diseases,[23] and systemic DNA damage responses leading to malignancies.[24]

Several experimental and clinical studies have indicated that aberrations and deregulations of the UPS contribute to the pathogenesis of several neurodegenerative and myodegenerative disorders, including Alzheimer's disease,[25] Parkinson's disease[26] and Pick's disease,[27] Amyotrophic lateral sclerosis (ALS),[27] Huntington's disease,[26] Creutzfeldt–Jakob disease,[28] and motor neuron diseases, polyglutamine (PolyQ) diseases, Muscular dystrophies[29] and several rare forms of neurodegenerative diseases associated with dementia.[30] As part of the Ubiquitin-Proteasome System (UPS), the proteasome maintains cardiac protein homeostasis and thus plays a significant role in cardiac Ischemic injury,[31] ventricular hypertrophy[32] and heart failure.[33] Additionally, evidence is accumulating that the UPS plays an essential role in malignant transformation. UPS proteolysis plays a major role in responses of cancer cells to stimulatory signals that are critical for the development of cancer. Accordingly, gene expression by degradation of transcription factors, such as p53, c-jun, c-Fos, NF-κB, c-Myc, HIF-1α, MATα2, STAT3, sterol-regulated element-binding proteins and androgen receptors are all controlled by the UPS and thus involved in the development of various malignancies.[34] Moreover, the UPS regulates the degradation of tumor suppressor gene products such as adenomatous polyposis coli (APC) in colorectal cancer, retinoblastoma (Rb). and von Hippel–Lindau tumor suppressor (VHL), as well as a number of proto-oncogenes (Raf, Myc, Myb, Rel, Src, Mos, Abl). The UPS is also involved in the regulation of inflammatory responses. This activity is usually attributed to the role of proteasomes in the activation of NF-κB which further regulates the expression of pro inflammatory cytokines such as TNF-α, IL-β, IL-8, adhesion molecules (ICAM-1, VCAM-1, P-selectin) and prostaglandins and nitric oxide (NO).[23] Additionally, the UPS also plays a role in inflammatory responses as regulators of leukocyte proliferation, mainly through proteolysis of cyclines and the degradation of CDK inhibitors.[35] Lastly, autoimmune disease patients with SLE, Sjögren syndrome and rheumatoid arthritis (RA) predominantly exhibit circulating proteasomes which can be applied as clinical biomarkers.[36]

During the antigen processing for the major histocompatibility complex (MHC) class-I, the proteasome is the major degradation machinery that degrades the antigen and present the resulting peptides to cytotoxic T lymphocytes.[37][38] The immunoproteasome has been considered playing a critical role in improving the quality and quantity of generated class-I ligands.

The clinical relevance of the PSMB9 protein can be found mostly in the areas of infectious diseases, autoimmune diseases and oncology. For instance, it has been verified that mRNA coding for PSMB9 (together with CFD, MAGED1, PRDX4 and FCGR3B) is differentially expressed between patients who developed clinical symptoms associated with the mild disease type of Dengue fever, and patients who showed clinical symptoms associated with severe Dengue. The study suggests that this gene expression panel may serve as biomarkers of clinical prognosis in Dengue hemorrhagic fever.[39] Further studies also indicate a role for PMSB9, in a panel with 9 other genes (Zbp1, Mx2, Irf7, Lfi47, Tapbp, Timp1, Trafd1, Tap2) in the development of influenza vaccines,[40] and in the diagnosis of autoimmune disease Sjögren syndrome in conjunction with 18 other genes (EPSTI1, IFI44, IFI44L, IFIT1, IFIT2, IFIT3, MX1, OAS1, SAMD9L, STAT1, HERC5, EV12B, CD53, SELL, HLA-DQA1, PTPRC, B2M, and TAP2).[41] With regards to oncology, PSMB9 in conjunction with other genes that are involved with immune response processes (TAP1, PSMB8, PSMB9, HLA-DQB1, HLA-DQB2, HLA-DMA, and HLA-DOA) may form a comprehensive assessment of the clinical outcome in epithelial ovarian carcinoma tumor methylation assessments. The study suggest that an epigenetically mediated immune response is a predictor of recurrence and, possibly, treatment response for high-grade serous epithelial ovarian carcinomas.[42]

gollark: In the progeny of the ancestors of bedgj, the tan-ness varies from 2/4 to 1/5 or something.
gollark: People have crazily analysed everything else (luminae breeding is an example) so why not this?
gollark: Well, yes, it's probability, but find enough and you can check.
gollark: That reminds me of a question I wanted to ask: how many ridgewings come out tan?
gollark: WE MUST HAVE OUR REVENGE!

References

  1. ENSG00000243067, ENSG00000240065, ENSG00000240508, ENSG00000242711, ENSG00000243594, ENSG00000243958, ENSG00000239836 GRCh38: Ensembl release 89: ENSG00000240118, ENSG00000243067, ENSG00000240065, ENSG00000240508, ENSG00000242711, ENSG00000243594, ENSG00000243958, ENSG00000239836 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000096727 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kelly A, Powis SH, Glynne R, Radley E, Beck S, Trowsdale J (Oct 1991). "Second proteasome-related gene in the human MHC class II region". Nature. 353 (6345): 667–8. Bibcode:1991Natur.353..667K. doi:10.1038/353667a0. PMID 1922385.
  6. Bodmer JG, Marsh SG, Albert ED, Bodmer WF, Dupont B, Erlich HA, Mach B, Mayr WR, Parham P, Sasazuki T (Apr 1992). "Nomenclature for factors of the HLA system, 1991. WHO Nomenclature Committee for factors of the HLA system". Tissue Antigens. 39 (4): 161–73. doi:10.1111/j.1399-0039.1992.tb01932.x. PMID 1529427.
  7. "Entrez Gene: PSMB9 proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2)".
  8. Coux O, Tanaka K, Goldberg AL (Nov 1996). "Structure and functions of the 20S and 26S proteasomes". Annual Review of Biochemistry. 65: 801–47. doi:10.1146/annurev.bi.65.070196.004101. PMID 8811196.
  9. Basler M, Kirk CJ, Groettrup M (Feb 2013). "The immunoproteasome in antigen processing and other immunological functions". Current Opinion in Immunology (Submitted manuscript). 25 (1): 74–80. doi:10.1016/j.coi.2012.11.004. PMID 23219269.
  10. Coux O, Tanaka K, Goldberg AL (1996). "Structure and functions of the 20S and 26S proteasomes". Annual Review of Biochemistry. 65: 801–47. doi:10.1146/annurev.bi.65.070196.004101. PMID 8811196.
  11. Tomko RJ, Hochstrasser M (2013). "Molecular architecture and assembly of the eukaryotic proteasome". Annual Review of Biochemistry. 82: 415–45. doi:10.1146/annurev-biochem-060410-150257. PMC 3827779. PMID 23495936.
  12. Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (Apr 1997). "Structure of 20S proteasome from yeast at 2.4 A resolution". Nature. 386 (6624): 463–71. Bibcode:1997Natur.386..463G. doi:10.1038/386463a0. PMID 9087403.
  13. Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (Nov 2000). "A gated channel into the proteasome core particle". Nature Structural Biology. 7 (11): 1062–7. doi:10.1038/80992. PMID 11062564.
  14. Zong C, Gomes AV, Drews O, Li X, Young GW, Berhane B, Qiao X, French SW, Bardag-Gorce F, Ping P (Aug 2006). "Regulation of murine cardiac 20S proteasomes: role of associating partners". Circulation Research. 99 (4): 372–80. doi:10.1161/01.RES.0000237389.40000.02. PMID 16857963.
  15. Yang Y, Früh K, Ahn K, Peterson PA (Nov 1995). "In vivo assembly of the proteasomal complexes, implications for antigen processing". The Journal of Biological Chemistry. 270 (46): 27687–94. doi:10.1074/jbc.270.46.27687. PMID 7499235.
  16. Kleiger G, Mayor T (Jun 2014). "Perilous journey: a tour of the ubiquitin–proteasome system". Trends in Cell Biology. 24 (6): 352–9. doi:10.1016/j.tcb.2013.12.003. PMC 4037451. PMID 24457024.
  17. Goldberg AL, Stein R, Adams J (Aug 1995). "New insights into proteasome function: from archaebacteria to drug development". Chemistry & Biology. 2 (8): 503–8. doi:10.1016/1074-5521(95)90182-5. PMID 9383453.
  18. Sulistio YA, Heese K (Jan 2015). "The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease". Molecular Neurobiology. 53 (2): 905–31. doi:10.1007/s12035-014-9063-4. PMID 25561438.
  19. Ortega Z, Lucas JJ (2014). "Ubiquitin-proteasome system involvement in Huntington's disease". Frontiers in Molecular Neuroscience. 7: 77. doi:10.3389/fnmol.2014.00077. PMC 4179678. PMID 25324717.
  20. Sandri M, Robbins J (Jun 2014). "Proteotoxicity: an underappreciated pathology in cardiac disease". Journal of Molecular and Cellular Cardiology. 71: 3–10. doi:10.1016/j.yjmcc.2013.12.015. PMC 4011959. PMID 24380730.
  21. Drews O, Taegtmeyer H (Dec 2014). "Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies". Antioxidants & Redox Signaling. 21 (17): 2322–43. doi:10.1089/ars.2013.5823. PMC 4241867. PMID 25133688.
  22. Wang ZV, Hill JA (Feb 2015). "Protein quality control and metabolism: bidirectional control in the heart". Cell Metabolism. 21 (2): 215–26. doi:10.1016/j.cmet.2015.01.016. PMC 4317573. PMID 25651176.
  23. Karin M, Delhase M (Feb 2000). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling". Seminars in Immunology. 12 (1): 85–98. doi:10.1006/smim.2000.0210. PMID 10723801.
  24. Ermolaeva MA, Dakhovnik A, Schumacher B (Jan 2015). "Quality control mechanisms in cellular and systemic DNA damage responses". Ageing Research Reviews. 23 (Pt A): 3–11. doi:10.1016/j.arr.2014.12.009. PMC 4886828. PMID 25560147.
  25. Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (Jul 2000). "Role of the proteasome in Alzheimer's disease". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1502 (1): 133–8. doi:10.1016/s0925-4439(00)00039-9. PMID 10899438.
  26. Chung KK, Dawson VL, Dawson TM (Nov 2001). "The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders". Trends in Neurosciences. 24 (11 Suppl): S7–14. doi:10.1016/s0166-2236(00)01998-6. PMID 11881748.
  27. Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (Jul 2002). "Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia". Acta Neuropathologica. 104 (1): 21–8. doi:10.1007/s00401-001-0513-5. PMID 12070660.
  28. Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H (May 1992). "Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease". Neuroscience Letters. 139 (1): 47–9. doi:10.1016/0304-3940(92)90854-z. PMID 1328965.
  29. Mathews KD, Moore SA (Jan 2003). "Limb-girdle muscular dystrophy". Current Neurology and Neuroscience Reports. 3 (1): 78–85. doi:10.1007/s11910-003-0042-9. PMID 12507416.
  30. Mayer RJ (Mar 2003). "From neurodegeneration to neurohomeostasis: the role of ubiquitin". Drug News & Perspectives. 16 (2): 103–8. doi:10.1358/dnp.2003.16.2.829327. PMID 12792671.
  31. Calise J, Powell SR (Feb 2013). "The ubiquitin proteasome system and myocardial ischemia". American Journal of Physiology. Heart and Circulatory Physiology. 304 (3): H337–49. doi:10.1152/ajpheart.00604.2012. PMC 3774499. PMID 23220331.
  32. Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (Mar 2010). "Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies". Circulation. 121 (8): 997–1004. doi:10.1161/CIRCULATIONAHA.109.904557. PMC 2857348. PMID 20159828.
  33. Powell SR (Jul 2006). "The ubiquitin-proteasome system in cardiac physiology and pathology". American Journal of Physiology. Heart and Circulatory Physiology. 291 (1): H1–H19. doi:10.1152/ajpheart.00062.2006. PMID 16501026.
  34. Adams J (Apr 2003). "Potential for proteasome inhibition in the treatment of cancer". Drug Discovery Today. 8 (7): 307–15. doi:10.1016/s1359-6446(03)02647-3. PMID 12654543.
  35. Ben-Neriah Y (Jan 2002). "Regulatory functions of ubiquitination in the immune system". Nature Immunology. 3 (1): 20–6. doi:10.1038/ni0102-20. PMID 11753406.
  36. Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester GR, Kloetzel PM, Feist E (Oct 2002). "Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases". The Journal of Rheumatology. 29 (10): 2045–52. PMID 12375310.
  37. Basler M, Lauer C, Beck U, Groettrup M (Nov 2009). "The proteasome inhibitor bortezomib enhances the susceptibility to viral infection". Journal of Immunology. 183 (10): 6145–50. doi:10.4049/jimmunol.0901596. PMID 19841190.
  38. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (Sep 1994). "Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules". Cell. 78 (5): 761–71. doi:10.1016/s0092-8674(94)90462-6. PMID 8087844.
  39. Silva MM, Gil LH, Marques ET, Calzavara-Silva CE (Sep 2013). "Potential biomarkers for the clinical prognosis of severe dengue". Memórias do Instituto Oswaldo Cruz. 108 (6): 755–62. doi:10.1590/0074-0276108062013012. PMC 3970693. PMID 24037198.
  40. Momose H, Mizukami T, Kuramitsu M, Takizawa K, Masumi A, Araki K, Furuhata K, Yamaguchi K, Hamaguchi I (2015). "Establishment of a new quality control and vaccine safety test for influenza vaccines and adjuvants using gene expression profiling". PLOS ONE. 10 (4): e0124392. Bibcode:2015PLoSO..1024392M. doi:10.1371/journal.pone.0124392. PMC 4409070. PMID 25909814.
  41. Khuder SA, Al-Hashimi I, Mutgi AB, Altorok N (May 2015). "Identification of potential genomic biomarkers for Sjögren's syndrome using data pooling of gene expression microarrays". Rheumatology International. 35 (5): 829–36. doi:10.1007/s00296-014-3152-6. PMID 25327574.
  42. Wang C, Cicek MS, Charbonneau B, Kalli KR, Armasu SM, Larson MC, Konecny GE, Winterhoff B, Fan JB, Bibikova M, Chien J, Shridhar V, Block MS, Hartmann LC, Visscher DW, Cunningham JM, Knutson KL, Fridley BL, Goode EL (Jun 2014). "Tumor hypomethylation at 6p21.3 associates with longer time to recurrence of high-grade serous epithelial ovarian cancer". Cancer Research. 74 (11): 3084–91. doi:10.1158/0008-5472.CAN-13-3198. PMC 4054691. PMID 24728075.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.