Magnesium sulfide

Magnesium sulfide is an inorganic compound with the formula MgS. It is a white crystalline material but often is encountered in an impure form that is brown and non-crystalline powder. It is generated industrially in the production of metallic iron.

Magnesium sulfide
Names
Other names
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.597
EC Number
  • 234-771-1
UNII
Properties
MgS
Molar mass 56.38 g/mol
Appearance white to reddish brown powder
Density 2.84 g/cm3
Melting point 2,000 °C (3,630 °F; 2,270 K) approx.
decomposes
Structure
Halite (cubic), cF8
Fm3m, No. 225
cubic
Thermochemistry
45.6 J/mol K
50.3 J/mol K
Std enthalpy of
formation fH298)
-347 kJ/mol
Hazards
Main hazards source of H2S
Related compounds
Other anions
Magnesium oxide
Other cations
Calcium sulfide
Strontium sulfide
Barium sulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Preparation and general properties

MgS is formed by the reaction of sulfur or hydrogen sulfide with magnesium. It crystallizes in the rock salt structure as its most stable phase, its zinc blende[1] and wurtzite[2] structures can be prepared by molecular beam epitaxy. The chemical properties of MgS resemble those of related ionic sulfides such as those of sodium, barium, or calcium. It reacts with oxygen to form the corresponding sulfate, magnesium sulfate. MgS reacts with water to give hydrogen sulfide and magnesium hydroxide.[3]

Applications

In the BOS steelmaking process, sulfur is the first element to be removed. Sulfur is removed from the impure blast furnace iron by the addition of several hundred kilograms of magnesium powder by a lance. Magnesium sulfide is formed, which then floats on the molten iron and is removed.[4]

MgS is a wide band-gap direct semiconductor of interest as a blue-green emitter, a property that has been known since the early 1900s.[5] The wide-band gap property also allows the use of MgS as photo-detector for short wavelength ultraviolet light.[6]

Occurrence

Aside from being a component of some slags, MgS is a rare nonterrestrial mineral niningerite detected in some meteorites. MgS is also found in the circumstellar envelopes of certain evolved carbon stars, i. e., those with C/O > 1.[7]

Safety

MgS evolves hydrogen sulfide upon contact with moisture.

gollark: ?tag bismuth1
gollark: ?tag blub
gollark: ?tag create blub Graham considers a hypothetical Blub programmer. When the programmer looks down the "power continuum", he considers the lower languages to be less powerful because they miss some feature that a Blub programmer is used to. But when he looks up, he fails to realise that he is looking up: he merely sees "weird languages" with unnecessary features and assumes they are equivalent in power, but with "other hairy stuff thrown in as well". When Graham considers the point of view of a programmer using a language higher than Blub, he describes that programmer as looking down on Blub and noting its "missing" features from the point of view of the higher language.
gollark: ?tag blub Graham considers a hypothetical Blub programmer. When the programmer looks down the "power continuum", he considers the lower languages to be less powerful because they miss some feature that a Blub programmer is used to. But when he looks up, he fails to realise that he is looking up: he merely sees "weird languages" with unnecessary features and assumes they are equivalent in power, but with "other hairy stuff thrown in as well". When Graham considers the point of view of a programmer using a language higher than Blub, he describes that programmer as looking down on Blub and noting its "missing" features from the point of view of the higher language.
gollark: > As long as our hypothetical Blub programmer is looking down the power continuum, he knows he's looking down. Languages less powerful than Blub are obviously less powerful, because they're missing some feature he's used to. But when our hypothetical Blub programmer looks in the other direction, up the power continuum, he doesn't realize he's looking up. What he sees are merely weird languages. He probably considers them about equivalent in power to Blub, but with all this other hairy stuff thrown in as well. Blub is good enough for him, because he thinks in Blub.

References

  1. Bradford, C.; O'Donnell, C. B.; Urbaszek, B.; Balocchi, A.; Morhain, C.; Prior, K. A.; Cavenett, B. C. (2000). "Growth of zinc blende MgS/ZnSe single quantum wells by molecular-beam epitaxy using ZnS as a sulphur source". Appl. Phys. Lett. 76: 3929. Bibcode:2000ApPhL..76.3929B. doi:10.1063/1.126824.
  2. Lai, Y. H.; He, Q. L.; Cheung, W. Y.; Lok, S. K.; Wong, K. S.; Ho, S. K.; Tam, K. W.; Sou, I. K. (2013). "Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection". Applied Physics Letters. 102: 171104. Bibcode:2013ApPhL.102q1104L. doi:10.1063/1.4803000.
  3. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
  4. Irons, G. A.; Guthrie, R. I. L. "Kinetic aspects of magnesium desulfurization of blast furnace iron" Ironmaking and Steelmaking (1981), volume 8, pp.114-21.
  5. Tiede, E. "Reindarstellung von Magnesiumsulfid und seine Phosphorescenz. I (Preparation of pure magnesium sulfide and its phosphorescence. I)" Berichte der Deutschen Chemischen Gesellschaft (1916), volume 49, pages 1745-9.
  6. Hoi Lai, Ying; Cheung, Wai-Yip; Lok, Shu-Kin; Wong, George K.L.; Ho, Sut-Kam; Tam, Kam-Weng; Sou, Iam-Keong (2012). "Rocksalt MgS solar blind ultra-violet detectors". AIP Advances. 2: 012149. Bibcode:2012AIPA....2a2149L. doi:10.1063/1.3690124.
  7. Goebel, J. H.; Moseley, S. H. (1985). "MgS Grain Component in Circumstellar Shells". Astrophysical Journal Letters. 290: L35. Bibcode:1985ApJ...290L..35G. doi:10.1086/184437.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.