Pyranoanthocyanin

The pyranoanthocyanins are a type of pyranoflavonoids. They are chemical compounds formed in red wines by yeast during fermentation processes[1] or during controlled oxygenation processes[2] during the aging of wine.[3] The different classes of pyranoanthocyanins are carboxypyranoanthocyanins, methylpyranoanthocyanins, pyranoanthocyanin-flavanols, pyranoanthocyanin-phenols, portisins, oxovitisins and pyranoanthocyanin dimers; their general structure includes an additional ring (formed between the OH group at C-5 and the C-4 of the anthocyanin pyranic ring) that may have different substituents linked directly at C-10.[4]

Examples

Vitisin A type

  • Cyanidin-3-O-glucoside-pyruvic acid (m/z of [M+H]+ ion:517, λmax 506 nm)
  • Cyanidin-3-O-acetylglucoside-pyruvic acid (559 - 507)
  • Cyanidin-coumaroylglucoside-pyruvic acid (661 - 507 nm)
  • Delphinidin-3-O-glucoside-pyruvic acid (533 - 507 nm)
  • Delphinidin-3-O-acetylglucoside-pyruvic acid (575 - 509 nm)
  • Delphinidin-3-O-coumaroylglucoside-pyruvic acid (679 - 511 nm)
  • Peonidin-3-O-glucoside-pyruvic acid (531 - 509 nm)
  • Peonidin-3-O-acetylglucoside-pyruvic acid (573 - 510 nm)
  • Peonidin-3-O-coumaroylglucoside-pyruvic acid (677 - 511 nm)
  • Petunidin-3-O-glucoside-pyruvic acid (547 - 508 nm)
  • Petunidin-3-O-acetylglucoside-pyruvic acid (589 - 509 nm)
  • Petunidin-3-O-coumaroylglucoside-pyruvic acid (693 - 510 nm)
  • Malvidin-3-O-glucoside-pyruvic acid (561 - 513 nm)
  • Malvidin-3-O-acetylglucoside-pyruvic acid (603 - 516 nm)
  • Malvidin-3-O-coumaroylglucoside-pyruvic acid (707 - 513 nm)

Vitisin B type

  • Malvidin-3-O-glucoside-acetaldehyde (517 - 490 nm)
  • Malvidin-3-O-acetylglucoside-acetaldehyde (559 - 494 nm)
  • Malvidin-3-O-coumaroylglucoside-acetaldehyde (663 - 497 nm)

Oxovitisins

Oxovitisins are pyranone-anthocyanin derivatives[8]

  • Pyranone-malvidin-3-glucoside (Oxovitisin A)
  • Pyranone-malvidin-3-coumaroylglucoside[9]

Pinotin type

  • Delphinidin-3-O-glucoside-4-vinylcatechol (597 - 510 nm)
  • Delphinidin-3-O-acetylglucoside-4-vinylcatechol (639 - 512 nm)
  • Delphinidin-3-O-coumaroylglucoside-4-vinylcatechol (743 - 514 nm)
  • Peonidin-3-O-glucoside-4-vinylcatechol (595 - 504 nm)
  • Peonidin-3-O-acetylglucoside-4-vinylcatechol (637 - 506 nm)
  • Peonidin-3-O-coumaroylglucoside-4-vinylcatechol (741 - 508 nm)
  • Petunidin-3-O-glucoside-4-vinylcatechol (611 - 510 nm)
  • Petunidin-3-O-acetylglucoside-4-vinylcatechol (653 - 512 nm)
  • Petunidin-3-O-coumaroylglucoside-4-vinylcatechol (757 - 516 nm)
  • Malvidin-3-O-glucoside-4-vinylcatechol (625 - 512 nm)
  • Malvidin-3-O-acetylglucoside-4-vinylcatechol (667 - 514 nm)
  • Malvidin-3-O-coumaroylglucoside-4-vinylcatechol (771 - 514 nm)
  • Delphinidin-3-O-glucoside-4-vinylphenol (581 - 504 nm)
  • Delphinidin-3-O-acetylglucoside-4-vinylphenol (623 - 506 nm)
  • Delphinidin-3-O-coumaroylglucoside-4-vinylphenol (727 - 506 nm)
  • Peonidin-3-O-glucoside-4-vinylphenol (579 - 499 nm)
  • Peonidin-3-O-acetylglucoside-4-vinylphenol (621 - 504 nm)
  • Peonidin-3-O-coumaroylglucoside-4-vinylphenol (725 - 505 nm)
  • Petunidin-3-O-glucoside-4-vinylphenol (595 - 504 nm)
  • Petunidin-3-O-acetylglucoside-4-vinylphenol (636 - 506 nm)
  • Petunidin-3-O-coumaroylglucoside-4-vinylphenol (741 - 507 nm)
  • Malvidin-3-O-glucoside-4-vinylphenol (609 - 504 nm)
  • Malvidin-3-O-acetylglucoside-4-vinylphenol (651 - 507 nm)
  • Malvidin-3-O-coumaroylglucoside-4-vinylphenol (755 - 509 nm)
  • Malvidin-3-O-caffeoylglucoside-4-vinylphenol (771 - 532 nm)
  • Delphinidin-3-O-glucoside-4-vinylguaiacol (611 - 502 nm)
  • Peonidin-3-O-glucoside-4-vinylguaiacol (609 - 499 nm)
  • Petunidin-3-O-glucoside-4-vinylguaiacol (625 - 502 nm)
  • Malvidin-3-O-glucoside-4-vinylguaiacol (639 - 504 nm)
  • Malvidin-3-O-acetylglucoside-4-vinylguaiacol (681 - 506 nm)
  • Malvidin-3-O-coumaroylglucoside-vinylguaiacol (755 477 508 nm)

Flavanyl-pyranoanthocyanin type

  • Delphinidin-3-O-glucoside-4-vinyl(epi)catechin (777 - 501 nm)
  • Delphinidin-3-O-acetylglucoside-4-vinyl(epi)catechin (819 - 503 nm)
  • Peonidin-3-O-glucoside-4-vinyl(epi)catechin (775 - 199 nm)
  • Peonidin-3-O-acetylglucoside-4-vinyl(epi)catechin (817 - 501 nm)
  • Petunidin-3-O-glucoside-4-vinyl(epi)catechin (791 - 502 nm)
  • Petunidin-3-O-acetylglucoside-4-vinyl(epi)catechin (833 - 504 nm)
  • Malvidin-3-O-glucoside-4-vinyl(epi)catechin (805 - 503 nm)
  • Malvidin-3-O-acetylglucoside-4-vinyl(epi)catechin (847 - 508 nm)
  • Malvidin-3-O-coumaroylglucoside-4-vinyl(epi)catechin (951 - 503 nm)[10]
gollark: > so you can't bad write codeI can write bad code on ANY platform, thank you.
gollark: There's probably some patent or whatever behind it. But you can likely use VLC/ffmpeg for free anyway. Or your browser.
gollark: It could be argued that bees, but no.
gollark: Which that library has.
gollark: I really don't see what features you need other than... embeds, maybe?

References

  1. He, Jingren; Santos-Buelga, Celestino; Mateus, Nuno; De Freitas, Victor (2006). "Isolation and quantification of oligomeric pyranoanthocyanin-flavanol pigments from red wines by combination of column chromatographic techniques". Journal of Chromatography A. 1134 (1–2): 215–25. doi:10.1016/j.chroma.2006.09.011. PMID 16997314.
  2. Atanasova, Vessela; Fulcrand, Hélène; Cheynier, Véronique; Moutounet, Michel (2002). "Effect of oxygenation on polyphenol changes occurring in the course of wine-making". Analytica Chimica Acta. 458: 15. doi:10.1016/S0003-2670(01)01617-8.
  3. Brouillard, R; Chassaing, S; Fougerousse, A (2003). "Why are grape/fresh wine anthocyanins so simple and why is it that red wine color lasts so long?". Phytochemistry. 64 (7): 1179–86. doi:10.1016/S0031-9422(03)00518-1. PMID 14599515.
  4. De Freitas, V; Mateus, N (2011). "Formation of pyranoanthocyanins in red wines: A new and diverse class of anthocyanin derivatives". Analytical and Bioanalytical Chemistry. 401 (5): 1463–73. doi:10.1007/s00216-010-4479-9. PMID 21181135.
  5. Wirth, J.; Morel-Salmi, C.; Souquet, J.M.; Dieval, J.B.; Aagaard, O.; Vidal, S.; Fulcrand, H.; Cheynier, V. (2010). "The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines". Food Chemistry. 123: 107. doi:10.1016/j.foodchem.2010.04.008.
  6. Nixdorf, Suzana Lucy; Hermosín-Gutiérrez, Isidro (2010). "Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity". Analytica Chimica Acta. 659 (1–2): 208–15. doi:10.1016/j.aca.2009.11.058. PMID 20103126.
  7. Mateus, N; Oliveira, J; Haettich-Motta, M; De Freitas, V (2004). "New Family of Bluish Pyranoanthocyanins". Journal of Biomedicine & Biotechnology. 2004 (5): 299–305. doi:10.1155/S1110724304404033. PMC 1082895. PMID 15577193.
  8. Oxovitisins: A New Class of Neutral Pyranone-anthocyanin Derivatives in Red Wines. Jingren He, Joana Oliveira, Artur M. S. Silva, Nuno Mateus and Victor De Freitas, J. Agric. Food Chem., 2010, 58 (15), pages 8814–8819, doi:10.1021/jf101408q
  9. Oxidative formation and structural characterisation of new α-pyranone (lactone) compounds of non-oxonium nature originated from fruit anthocyanins. Jingren He, Artur M.S. Silva, Nuno Mateus and Victor de Freitas, Food Chemistry, Volume 127, Issue 3, 1 August 2011, pages 984–992, doi:10.1016/j.foodchem.2011.01.069
  10. Anthocyanins and Their Variation in Red Wines II. Anthocyanin Derived Pigments and Their Color Evolution. Fei He, Na-Na Liang, Lin Mu, Qiu-Hong Pan, Jun Wang, Malcolm J. Reeves and Chang-Qing Duan, Molecules, 2012, 17, pages 1483-1519, doi:10.3390/molecules17021483

See also

  • Phenolic compounds in wine
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.