Peroxymonosulfuric acid

Peroxymonosulfuric acid, (H2SO5), also known as persulfuric acid, peroxysulfuric acid, or Caro's acid. In this acid, the S(VI) center adopts its characteristic tetrahedral geometry; the connectivity is indicated by the formula HO–O–S(O)2–OH. It is one of the strongest oxidants known (E0 = +2.51 V) and is highly explosive.

Peroxymonosulfuric acid
Names
IUPAC names
Peroxysulfuric acid
Sulfuroperoxoic acid[1]
Systematic IUPAC name
(Dioxidanido)hydroxidodioxidosulfur[1][2]
Other names
Peroxosulfuric acid[1]
Peroxomonosulfuric acid
Persulfuric acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.028.879
EC Number
  • 231-766-6
101039
UNII
UN number 1483
Properties
H
2
SO
5
Molar mass 114.078 g mol−1
Appearance White crystals
Density 2.239 g cm−3
Melting point 45 °C
Conjugate base Peroxomonosulfate
Structure
Tetrahedral at S
Hazards
Main hazards strong oxidizer
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

H2SO5 is sometimes confused with H2S2O8, known as peroxydisulfuric acid. The disulfuric acid, which appears to be more widely used as its alkali metal salts, has the structure HO–S(O)2–O–O–S(O)2–OH.

History

H2SO5 was first described in 1898 by Heinrich Caro, after whom it is named.[3]

Synthesis and production

The laboratory scale preparation of Caro's acid involves the combination of chlorosulfuric acid and hydrogen peroxide.

H2O2 + ClSO2OH ⇌ H2SO5 + HCl [4]

Published patents include more than one reaction for preparation of Caro's acid, usually as an intermediate for the production of potassium monopersulfate (PMPS), a bleaching and oxidizing agent. One patent for production of Caro's acid for this purpose gives the following reaction:

H2O2 + H2SO4 ⇌ H2SO5 + H2O [5]

Uses in industry

H2SO5 has been used for a variety of disinfectant and cleaning applications, e.g., swimming pool treatment and denture cleaning. Alkali metal salts of H2SO5 show promise for the delignification of wood.[6] It is also used in laboratories as a last resort in removing organic materials since H2SO5 can fully oxidize any organic materials.

Ammonium, sodium, and potassium salts of H2SO5 are used in the plastic industry as polymerization initiators, etchants, desizing agents, soil conditioner, and for decolorizing and deodorizing oils.

Potassium peroxymonosulfate, KHSO5, is the potassium acid salt of peroxymonosulfuric acid. It is widely used as an oxidizing agent.

Hazards

Pure Caro's acid is highly explosive. Explosions have been reported at Brown University[7] and Sun Oil. As with all strong oxidizing agents, peroxysulfuric acid should be kept away from organic compounds such as ethers and ketones because of its ability to peroxidize these compounds, creating highly unstable molecules such as acetone peroxide.

gollark: Well, in English we made it sort of optional, at least.
gollark: Idea for pronouns for baidicoot: emuwaronlinewhen/emuwaronlinewhenen.
gollark: Also, Emu War Online WHEN?
gollark: I do not understand what you are implicating, "baidi"coot.
gollark: > <@!258639553357676545> is it really a choice if youve basically been taught your whole life that the real you is false<@132185638983303168> What?

See also

References

  1. International Union of Pure and Applied Chemistry (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): RSCIUPAC. ISBN 0-85404-438-8. p. 139. Electronic version.
  2. "peroxysulfuric acid (CHEBI:29286)". Chemical Entities of Biological Interest. UK: European Bioinformatics Institute. 20 November 2007. Retrieved 17 November 2011.
  3. Caro, H. (1898). "Zur Kenntniss der Oxydation aromatischer Amine" [[Contribution] to [our] knowledge of the oxidation of aromatic amines]. Zeitschrift für angewandte Chemie. 11 (36): 845–846. doi:10.1002/ange.18980113602.
  4. "Synthesis of Caro's acid". PrepChem.com. 2017-02-13. Retrieved 2018-10-12.
  5. A method and apparatus for producing a peroxyacid solution, retrieved 2018-10-12
  6. Springer, E. L.; McSweeny, J. D. (1993). "Treatment of softwood kraft pulps with peroxymonosulfate before oxygen delignification". TAPPI Journal. 76 (8): 194–199. ISSN 0734-1415. Archived from the original on 2011-09-29. Retrieved 2011-05-14.
  7. J.O. Edwards (1955). "SAFETY". Chem. Eng. News. 33 (32): 3336. doi:10.1021/cen-v033n032.p3336.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.