Europium(II) sulfide

Europium (II) sulfide is the inorganic compound with the chemical formula EuS. It is a black, air-stable powder. Europium possesses an oxidation state of +II in europium sulfide, whereas the lanthanides exhibit a typical oxidation state of +III.[1] Its Curie temperature (Tc) is 16.6 K. Below this temperature EuS behaves like a ferromagnetic compound, and above it exhibits simple paramagnetic properties.[2] EuS is stable up to 500 °C in air, when it begins to show signs of oxidation. In an inert environment it decomposes at 1470 °C.[3]

Europium(II) sulfide
Names
IUPAC name
europium(II) sulfide
Identifiers
ECHA InfoCard 100.031.498
Properties
EuS
Molar mass 184.03 g/mol
Appearance black powder
Melting point 2,250 °C (4,080 °F; 2,520 K)
+25,730;·10−6 cm3/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Structure

EuS crystallizes in face-centered cubic (FCC) crystal lattice with the rock salt structure. Both europium and sulfur have octahedral coordination geometry with a coordination number of six.[4][5] The Eu-S bond lengths are 2.41 Å.

Preparation

In the preparation of EuS, powdered europium(III) oxide (Eu2O3) is treated with hydrogen sulfide (H2S) at 1150 °C. The crude EuS product is purified by heating at 900 °C under vacuum to remove excess sulfur.[4][3]

Eu2O3 + 3 H2S → 2 EuS + 3 H2O + S

EuS has additionally been synthesized from europium dichloride (EuCl2), however, such products tend to be contaminated by chloride.[4]

Research

In the past few decades, a new interest has been exhibited in the synthesis of EuS, as well as its oxygen analog EuO, because of their potential as laser window materials, insulating ferromagnets, ferromagnetic semiconductors, and magnetoresistant, optomagnetic, and luminescent materials. EuS was used in an experiment providing evidence of Majorana fermions relevant to quantum computing and the production of qubits.[3][2][6]

gollark: ```nodefunction iterate(iterable, monad) { if (!iterable) return; for (var i = 0; i < iterable.length; i++) monad(iterable[i]);}```???
gollark: Any API is public with enough poking.
gollark: Well, obviously, got to connect to the backend somehow.
gollark: I AM AND IT'S IN BASH.
gollark: Aaargh what even is their backend code DOING?

References

  1. C. Housecroft. Inorganic Chemistry. 3rd. Essex, England: Pearson Education Limited, 2008. Print. ISBN 0-13-175553-6
  2. Zhao, F. Sun, H. Su, G. Gao, S. Small, Synthesis and Size-Dependant Magnetic Properties of Monodisperse EuS Nanocrystals. 2006 volume 2, No. 2, 244-248. doi:10.1002/smll.200500294
  3. Ananth K. P. Gielisse P.J. Rockett T.J. Mat. Res. Bull., Synthesis and Characterization of Europium Sulfide. 1974, volume 9, 1167-1172. doi:10.1016/0025-5408(74)90033-6
  4. Archer, R. D. Mitchel, W. N. Inorganic Syntheses, Europium (II) Sulfide. 1967, volume 10, 77-79. doi:10.1002/9780470132418
  5. Wells A.F. Structural Inorganic Chemistry. 5th. London, England: Oxford University Press, 1984. Print. ISBN 0-19-855370-6
  6. "Sujit Manna et al. Signature of a pair of Majorana zero modes in superconducting gold surface states, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.1919753117"
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.