Orders of magnitude (energy)
Below 1 J
Factor (joules) | SI prefix | Value | Item |
---|---|---|---|
10−34 | 6.626×10−34 J | Photon energy of a photon with a frequency of 1 hertz.[1] | |
10−33 | 2×10−33 J | Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[2] | |
10−28 | 6.6×10−28 J | Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3] | |
10−24 | Yocto- (yJ) | 1.6×10−24 J | Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5] |
10−23 | 2×10−23 J | Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7] | |
10−22 | 2–3000×10−22 J | Energy of infrared light photons[8] | |
10−21 | Zepto- (zJ) | 1.7×10−21 J | 1 kJ/mol, converted to energy per molecule[9] |
2.1×10−21 J | Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10] | ||
2.856×10−21 J | By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information | ||
3–7×10−21 J | Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12] | ||
4.1×10−21 J | The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13] | ||
7–22×10−21 J | Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14] | ||
10−20 | 4.5×10−20 J | Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16] | |
10−19 | 1.6×10−19 J | ≈1 electronvolt (eV)[17] | |
3–5×10−19 J | Energy range of photons in visible light[18][19] | ||
3–14×10−19 J | Energy of a covalent bond (2–9 eV)[11][20] | ||
5–200×10−19 J | Energy of ultraviolet light photons[8] | ||
10−18 | Atto- (aJ) | ||
10−17 | 2–2000×10−17 J | Energy range of X-ray photons[8] | |
10−16 | |||
10−15 | Femto- (fJ) | 3 × 10−15 J | Average kinetic energy of one human red blood cell.[21][22][23] |
10−14 | 1×10−14 J | Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26] | |
> 2×10−14 J | Energy of gamma ray photons[8] | ||
2.7×10−14 J | Upper bound of the mass-energy of a muon neutrino[27][28] | ||
8.2×10−14 J | Rest mass-energy of an electron[29] | ||
10−13 | 1.6×10−13 J | 1 megaelectronvolt (MeV)[30] | |
10−12 | Pico- (pJ) | 2.3×10−12 J | Kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[31][32] |
10−11 | 3.4×10−11 J | Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[33][34] | |
10−10 | 1.5030×10−10 J | Rest mass-energy of a proton[35] | |
1.505×10−10 J | Rest mass-energy of a neutron[36] | ||
1.6×10−10 J | 1 gigaelectronvolt (GeV)[37] | ||
3×10−10 J | Rest mass-energy of a deuteron[38] | ||
6×10−10 J | Rest mass-energy of an alpha particle[39] | ||
7×10−10 J | Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[40] | ||
10−9 | Nano- (nJ) | 1.6×10−9 J | 10 GeV[41] |
8×10−9 J | Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[42][43] | ||
10−8 | 1.3×10−8 J | Mass-energy of a W boson (80.4 GeV)[44][45] | |
1.5×10−8 J | Mass-energy of a Z boson (91.2 GeV)[46][47] | ||
1.6×10−8 J | 100 GeV[48] | ||
2×10−8 J | Mass-energy of the Higgs Boson (125.1 GeV)[49] | ||
6.4×10−8 J | Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[50][51] | ||
10−7 | 1×10−7 J | ≡ 1 erg[52] | |
1.6×10−7 J | 1 TeV (teraelectronvolt),[53] about the kinetic energy of a flying mosquito[54] | ||
10−6 | Micro- (µJ) | 1.04×10−6 J | Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[55][56] |
10−5 | |||
10−4 | |||
10−3 | Milli- (mJ) | ||
10−2 | Centi- (cJ) | ||
10−1 | Deci- (dJ) | 1.1×10−1 J | Energy of an American half-dollar falling 1 metre[57][58] |
1 to 105 J
100 | J | 1 J | ≡ 1 N·m (newton–metre) |
1 J | ≡ 1 W·s (watt-second) | ||
1 J | Kinetic energy produced as an extra small apple (~100 grams[59]) falls 1 meter against Earth's gravity[60] | ||
1 J | Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[61] | ||
1.4 J | ≈ 1 ft·lbf (foot-pound force)[52] | ||
4.184 J | ≡ 1 thermochemical calorie (small calorie)[52] | ||
4.1868 J | ≡ 1 International (Steam) Table calorie[62] | ||
8 J | Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[63][64] | ||
101 | Deca- (daJ) | 1×101 J | Flash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V)[65][66] |
5×101 J | The most energetic cosmic ray ever detected[67] was most likely a single proton traveling only slightly slower than the speed of light.[68] | ||
102 | Hecto- (hJ) | 3×102 J | Energy of a lethal dose of X-rays[69] |
3×102 J | Kinetic energy of an average person jumping as high as they can[70][71][72] | ||
3.3×102 J | Energy to melt 1 g of ice[73] | ||
> 3.6×102 J | Kinetic energy of 800 gram[74] standard men's javelin thrown at > 30 m/s[75] by elite javelin throwers[76] | ||
5–20×102 J | Energy output of a typical photography studio strobe light in a single flash[77] | ||
6×102 J | Kinetic energy of 2 kg[78] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult[79] | ||
6×102 J | Use of a 10-watt flashlight for 1 minute | ||
7.5×102 J | A power of 1 horsepower applied for 1 second[52] | ||
7.8×102 J | Kinetic energy of 7.26 kg[80] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes[81] | ||
8.01×102 J | Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity) | ||
103 | Kilo- (kJ) | 1.1×103 J | ≈ 1 British thermal unit (BTU), depending on the temperature[52] |
1.4×103 J | Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[82] | ||
1.8×103 J | Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[83] | ||
2.3×103 J | Energy to vaporize 1 g of water into steam[84] | ||
3×103 J | Lorentz force can crusher pinch[85] | ||
3.4×103 J | Kinetic energy of world-record men's hammer throw (7.26 kg[86] thrown at 30.7 m/s[87] in 1986)[88] | ||
3.6×103 J | ≡ 1 W·h (watt-hour)[52] | ||
4.2×103 J | Energy released by explosion of 1 gram of TNT[52][89] | ||
4.2×103 J | ≈ 1 food Calorie (large calorie) | ||
~7×103 J | Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[90] | ||
9×103 J | Energy in an alkaline AA battery[91] | ||
104 | 1.7×104 J | Energy released by the metabolism of 1 gram of carbohydrates[92] or protein[93] | |
3.8×104 J | Energy released by the metabolism of 1 gram of fat[94] | ||
4–5×104 J | Energy released by the combustion of 1 gram of gasoline[95] | ||
5×104 J | Kinetic energy of 1 gram of matter moving at 10 km/s[96] | ||
105 | 3×105 – 15×105 J | Kinetic energy of an automobile at highway speeds (1 to 5 tons[97] at 89 km/h or 55 mph)[98] | |
5×105 J | Kinetic energy of 1 gram of a meteor hitting Earth[99] |
106 to 1011 J
106 | Mega- (MJ) | 1×106 J | Kinetic energy of a 2 tonne[97] vehicle at 32 metres per second (115 km/h or 72 mph)[100] |
1.2×106 J | Approximate food energy of a snack such as a Snickers bar (280 food calories)[101] | ||
3.6×106 J | = 1 kWh (kilowatt-hour) (used for electricity)[52] | ||
4.2×106 J | Energy released by explosion of 1 kilogram of TNT[52][89] | ||
8.4×106 J | Recommended food energy intake per day for a moderately active woman (2000 food calories)[102][103] | ||
107 | 1×107 J | Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[104] | |
1.1×107 J | Recommended food energy intake per day for a moderately active man (2600 food calories)[102][105] | ||
3.7×107 J | $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[106][107][108] | ||
4×107 J | Energy from the combustion of 1 cubic meter of natural gas[109] | ||
4.2×107 J | Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[110] | ||
6.3×107 J | Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[111] | ||
108 | 1×108 J | Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots) | |
1.1×108 J | ≈ 1 therm, depending on the temperature[52] | ||
1.1×108 J | ≈ 1 Tour de France, or ~90 hours[112] ridden at 5 W/kg[113] by a 65 kg rider[114] | ||
7.3×108 J | ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude) | ||
109 | Giga- (GJ) | 1–10×109 J | Energy in an average lightning bolt[115] (thunder) |
1.1×109 J | Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[116] | ||
1.2×109 J | Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s) | ||
1.4×109 J | Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[117][118] | ||
2×109 J | Energy of an ordinary 61 liter gasoline tank of a car.[95][119][120] | ||
2×109 J | The unit of energy in Planck units[121] | ||
3×109 J | Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s) | ||
3.3×109 J | Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[122][123] | ||
4.2×109 J | Energy released by explosion of 1 ton of TNT. | ||
4.5×109 J | Average annual energy usage of a standard refrigerator[124][125] | ||
6.1×109 J | ≈ 1 bboe (barrel of oil equivalent)[126] | ||
1010 | 1.9×1010 J | Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s) | |
4.2×1010 J | ≈ 1 toe (ton of oil equivalent)[126] | ||
4.6×1010 J | Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[127][128] | ||
7.3×1010 J | Energy consumed by the average U.S. automobile in the year 2000[129][130][131] | ||
8.6×1010 J | ≈ 1 MW·d (megawatt-day), used in the context of power plants[132] | ||
8.8×1010 J | Total energy released in the nuclear fission of one gram of uranium-235[33][34][133] | ||
1011 | 2.4×1011 J | Approximate food energy consumed by an average human in an 80-year lifetime.[134] |
1012 to 1017 J
1012 | Tera- (TJ) | 3.4×1012 J | Maximum fuel energy of an Airbus A330-300 (97,530 liters[135] of Jet A-1[136])[137] |
3.6×1012 J | 1 GW·h (gigawatt-hour)[138] | ||
4×1012 J | Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[139] thermal efficiency of reactor[140][141] | ||
4.2×1012 J | Energy released by explosion of 1 kiloton of TNT[52][142] | ||
6.4×1012 J | Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[143] of Jet A-1[136])[144] | ||
1013 | 1.1×1013 J | Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[145] of Jet A-1[136])[146] | |
1.2×1013 J | Orbital kinetic energy of the International Space Station (417 tonnes[147] at 7.7 km/s[148])[149] | ||
6.3×1013 J | Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[150][151] | ||
9×1013 J | Theoretical total mass-energy of 1 gram of matter[152] | ||
1014 | 1.8×1014 J | Energy released by annihilation of 1 gram of antimatter and matter | |
3.75×1014 J | Total energy released by the Chelyabinsk meteor.[153] | ||
6×1014 J | Energy released by an average hurricane in 1 second[154] | ||
1015 | Peta- (PJ) | > 1015 J | Energy released by a severe thunderstorm[155] |
1×1015 J | Yearly electricity consumption in Greenland as of 2008[156][157] | ||
4.2×1015 J | Energy released by explosion of 1 megaton of TNT[52][158] | ||
1016 | 1×1016 J | Estimated impact energy released in forming Meteor Crater | |
1.1×1016 J | Yearly electricity consumption in Mongolia as of 2010[156][159] | ||
9×1016 J | Mass-energy in 1 kilogram of antimatter (or matter)[160] | ||
1017 | 1×1017 J | Energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[161] | |
1.7×1017 J | Total energy from the Sun that strikes the face of the Earth each second[162] | ||
2.1×1017 J | Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[163][164] | ||
4.2×1017 J | Yearly electricity consumption of Norway as of 2008[156][165] | ||
4.5×1017 J | Approximate energy needed to accelerate one ton to one-tenth of the speed of light | ||
8×1017 J | Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[166][167] |
1018 to 1023 J
1018 | Exa- (EJ) | 1.4×1018 J | Yearly electricity consumption of South Korea as of 2009[156][168] |
1019 | 1.4×1019 J | Yearly electricity consumption in the U.S. as of 2009[156][169] | |
1.4×1019J | Yearly electricity production in the U.S. as of 2009[170][171] | ||
5×1019 J | Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[154] | ||
6.4×1019 J | Yearly electricity consumption of the world as of 2008[172][173] | ||
6.8×1019 J | Yearly electricity generation of the world as of 2008[172][174] | ||
1020 | 5×1020 J | Total world annual energy consumption in 2010[175][176] | |
8×1020 J | Estimated global uranium resources for generating electricity 2005[177][178][179][180] | ||
1021 | Zetta- (ZJ) | 6.9×1021 J | Estimated energy contained in the world's natural gas reserves as of 2010[175][181] |
7.9×1021 J | Estimated energy contained in the world's petroleum reserves as of 2010[175][182] | ||
1022 | 1.5×1022J | Total energy from the Sun that strikes the face of the Earth each day[162][183] | |
2.4×1022 J | Estimated energy contained in the world's coal reserves as of 2010[175][184] | ||
2.9×1022 J | Identified global uranium-238 resources using fast reactor technology[177] | ||
3.9×1022 J | Estimated energy contained in the world's fossil fuel reserves as of 2010[175][185] | ||
4×1022 J | Estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[186] | ||
1023 | |||
2.2×1023 J | Total global uranium-238 resources using fast reactor technology[177] | ||
5×1023 J | Approximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[187] |
Over 1023 J
1024 | Yotta- (YJ) | 5.5×1024 J | Total energy from the Sun that strikes the face of the Earth each year[162][188] |
1025 | 6×1025 J | Upper limit of energy released by a solar flare[189] | |
1026 | |||
3.8×1026 J | Total energy output of the Sun each second[190] | ||
1027 | 1×1027 J | Estimate of the energy released by the impact that created the Caloris basin on Mercury[191] | |
1028 | 3.8×1028 J | Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[192][193] | |
1029 | 2.1×1029 J | Rotational energy of the Earth[194][195][196] | |
1030 | 1.8×1030 J | Gravitational binding energy of Mercury | |
1031 | 3.3×1031 J | Total energy output of the Sun each day[190][197] | |
1032 | 2×1032 J | Gravitational binding energy of the Earth[198] | |
1033 | 2.7×1033 J | Earth's kinetic energy in its orbit[199] | |
1034 | 1.2×1034 J | Total energy output of the Sun each year[190][200] | |
1039 | 6.6×1039 J | Theoretical total mass-energy of the Moon | |
1041 | 2.276×1041 J | Gravitational binding energy of the Sun[201] | |
5.4×1041 J | Theoretical total mass-energy of the Earth[202][203] | ||
1043 | 5×1043 J | Total energy of all gamma rays in a typical gamma-ray burst[204][205] | |
1044 | 1–2×1044 J | Estimated energy released in a supernova,[206] sometimes referred to as a foe | |
1.2×1044 J | Approximate lifetime energy output of the Sun. | ||
1045 | (1.1±0.2)×1045 J | Brightest observed hypernova ASASSN-15lh[207] | |
few times×1045 J | Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[208][209][210][211][212] | ||
1046 | 1×1046 J | Estimated energy released in a hypernova[213] | |
1047 | 1.8×1047 J | Theoretical total mass-energy of the Sun[214][215] | |
5.4×1047 J | Mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[216] | ||
8.6×1047 J | Mass-energy emitted as gravitational waves during the largest black hole merger yet observed (GW170729), originally about 42 solar masses each. | ||
8.8×1047 J | GRB 080916C – the most powerful Gamma-Ray Burst (GRB) ever recorded – total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun's mass turned to energy.[217] | ||
1053 | 6×1053 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[218] | |
1054 | 3×1054 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[219] | |
1055 | 1055 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421 | |
1058 | 4×1058 J | Visible mass-energy in our galaxy, the Milky Way[220][221] | |
1059 | 1×1059 J | Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[222][223] | |
1062 | 1–2×1062 J | Total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[224] | |
1069 | 4×1069 J | Estimated total mass-energy of the observable universe[225] |
SI multiples
Submultiples | Multiples | |||||
---|---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name | |
10−1 J | dJ | decijoule | 101 J | daJ | decajoule | |
10−2 J | cJ | centijoule | 102 J | hJ | hectojoule | |
10−3 J | mJ | millijoule | 103 J | kJ | kilojoule | |
10−6 J | µJ | microjoule | 106 J | MJ | megajoule | |
10−9 J | nJ | nanojoule | 109 J | GJ | gigajoule | |
10−12 J | pJ | picojoule | 1012 J | TJ | terajoule | |
10−15 J | fJ | femtojoule | 1015 J | PJ | petajoule | |
10−18 J | aJ | attojoule | 1018 J | EJ | exajoule | |
10−21 J | zJ | zeptojoule | 1021 J | ZJ | zettajoule | |
10−24 J | yJ | yoctojoule | 1024 J | YJ | yottajoule |
The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full it follows the rules for capitalisation of a common noun; i.e., "joule" becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.
gollark: That is, I must admit, "based".
gollark: * compiler
gollark: Idea: threaten lyricly by saying you'll send him a description of SCP-3125 if he doesn't make you moderator.
gollark: You should read the antimemetics division stories.
gollark: Hmm, probably somewhat anomalous, I guess, but boring and uncool.
See also
- Conversion of units of energy
- Energy conversion efficiency
- Energy density
- Metric system
- Outline of energy
- Scientific notation
- TNT equivalent
Notes
- "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 26 December 2016.
- Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1×10−10 × 1.38×10−23 ≈ 2.07×10−33 J
- Calculated: Ephoton = hν = 6.626×10−34 J-s × 1×106 Hz = 6.6×10−28 J. In eV: 6.6×10−28 J / 1.6×10−19 J/eV = 4.1×10−9 eV.
- "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.
- Calculated: Ephoton = hν = 6.626×10−34 J-s × 2.45×108 Hz = 1.62×10−24 J. In eV: 1.62×10−24 J / 1.6×10−19 J/eV = 1.0×10−5 eV.
- "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
- Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1 × 1.38×10−23 ≈ 2.07×10−23 J
- "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.
- Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×10−21 J per entity
- Calculated: 1.381×10−23 J/K × 298.15 K / 2 = 2.1×10−21 J
- "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 13 November 2011.
- Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×10−21 J. In eV: 3.3×10−21 J / 1.6×10−19 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 J/eV = 0.04 eV.
- Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
- Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×10−20 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×10−19 eV/J = 0.13 eV.
- Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754.
- Calculated: 0.28 eV × 1.6×10−19 J/eV = 4.5×10−20 J
- "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
- "BASIC LAB KNOWLEDGE AND SKILLS". Archived from the original on 15 May 2013. Retrieved 5 November 2011.
Visible wavelengths are roughly from 390 nm to 780 nm
- Calculated: E = hc/λ. E780 nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (780×10−9 m) = 2.5×10−19 J. E_390 _nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (390×10−9 m) = 5.1×10−19 J
- Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×10−19 J. (3.47×10−19 J / 1.60×10−19 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×10−18 J. (7.64×10−19 J / 1.60×10−19 eV/J = 8.68 eV.)
- Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682.
Roughly 27 picograms
- Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 19 August 2016.
The [...] blood [...] flow[s] at an average speed of 3 to 4 mph
- Calculated: 1/2 × 27×10−12 g × (3.5 miles per hour)2 = 3×10−15 J
- "Physics of the Body" (PDF). Notre Dame. Retrieved 19 August 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."
- "Intensity and the Decibel Scale". Physics Classroom. Retrieved 19 August 2016.
- Calculated: two eardrums ≈ 1 cm2. 1×10−6 W/m2 × 1×10−4 m2 × 1 s = 1×10−14 J
- Thomas J Bowles (2000). P. Langacker (ed.). Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011.
an upper limit ov m_v_u < 170 keV
- Calculated: 170×103 eV × 1.6×10−19 J/eV = 2.7×10−14 J
- "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 5 November 2011.
The neutron comes out with high energy of 14.1 MeV
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
- "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
- "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
- Calculated: 7×10−4 g × 9.8 m/s2 × 1×10−4 m
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011.
the LEP machine energy is about 50 GeV per beam
- Calculated: 50×109 eV × 1.6×10−19 J/eV = 8×10−9 J
- "W". PDG Live. Particle Data Group. Archived from the original on 17 July 2012. Retrieved 4 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. Archived from the original on 12 July 2012.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803. PMID 26024162.
- Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011.
A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
- Calculated: 400×109 eV × 1.6×10−19 J/eV = 6.4×10−8 J
- "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2 July 2009.
1.355818
- "Conversion from eV to J". NIST. Retrieved 4 November 2011.
- "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 24 January 2014.
A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
- "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.
- Calculated: 6.5×1012 eV per beam × 1.6×10−19 J/eV = 1.04×10−6 J
- "Coin specifications". United States Mint. Retrieved 2 November 2011.
11.340 g
- Calculated: m×g×h = 11.34×10−3 kg × 9.8 m/s2 × 1 m = 1.1×10−1 J
- "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 8 December 2011.
- Calculated: m×g×h = 1×10−1 kg × 9.8 m/s2 × 1 m = 1 J
- "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
- "Footnotes". NIST Guide to the SI. NIST. 2 July 2009.
- "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
- Calculated: 5×1019 eV × 1.6×10−19 J/ev = 8 J
- "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011.
The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
- "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 6 June 2013.
- "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.
- Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144–150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344.
- "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
- "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011.
41–50 cm (males) 31–40 cm (females)
- "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011.
70 kg
- Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×10−2 m = 274 J
- "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013.
334 kJ/kg
- "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.
- Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Archived from the original (PDF) on 13 August 2011. Retrieved 13 December 2011.
For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
- Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J
- Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 13 December 2011.
Most serious studio photographers start with about 2000 watts-seconds
- "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.
- Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J
- "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.
- Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J
- Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
- "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 12 December 2011.
- "Fluids – Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013.
2257 kJ/kg
- powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
- "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.
- Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (PDF). Retrieved 4 November 2011.
The total release velocity is 30.7 m/sec
- Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J
- 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent
- ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 7 September 2010.
- "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 15 December 2011.
- "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
- "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
- "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
- "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
- Calculated: E = 1/2 m×v2 = 1/2 × (1×10−3 kg) × (1×104 m/s)2 = 5×104 J.
- "List of Car Weights". LoveToKnow. Retrieved 13 December 2011.
3000 to 12000 pounds
- Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.
- Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 13 November 2011.
- Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J
- "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 14 November 2011.
- "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
- Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J
- Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.
- Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J
- "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011.
$28.90 per million BTU
- Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar
- Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh
- "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
- "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
- Cline, James E. D. "Energy to Space". Retrieved 13 November 2011.
6.27×107 Joules / Kg
- "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
- "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 4 November 2011.
- Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J
- Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011.
It discharges about 1–10 billion joules of energy
- "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 10 December 2011.
magnetic energy of 1.1 Gigajoules
- "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011.
377 kWh/mt
- Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J
- Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 6 July 2008.
- thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin, 6 May 2012
- "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011.
The mechanical power of the human heart is ~1.3 watts
- Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J
- "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011.
For refrigerators in 2001, the average UEC was 1,239 kWh
- Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J
- Energy Units, by Arthur Smith, 21 January 2005
- "Top 10 Biggest Explosions". Listverse. 28 November 2011. Retrieved 10 December 2011.
a yield of 11 tons of TNT
- Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J
- "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011.
581 gallons of gasoline
- "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 12 December 2011.
a gallon of gas ... 125 million joules of energy
- Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J
- Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J
- Calculated: 3.44×10−10 J/U-235-fission × 1×10−3 kg / (235 amu per U-235-fission × 1.66×10−27 amu/kg) = 8.82×10−10 J
- Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J
- "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011.
97530 litres
- "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 19 August 2011.CS1 maint: archived copy as title (link)
- Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J
- Calculated: 1×109 watts × 3600 seconds/hour
- Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Retrieved 13 December 2011.
The thermal efficiency of a CANDU plant is only about 29%
- "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011.
fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
- Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J
- Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent
- "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 12 December 2011.
183,380 L
- Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J
- "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011.
320,000 L
- Calculated: 320,000 l × 0.804 kg/L × 43.15 MJ/kg = 11.1×1012 J
- "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
- "The wizards of orbits". European Space Agency. Retrieved 10 December 2011.
The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
- Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J
- "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011.
21 kt
- Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- "JPL – Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 13 April 2017.
- "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
- "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 10 December 2011.
- "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 11 December 2011.
- Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J
- Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent
- Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J
- Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J
- "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 9 December 2011.
- The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter.
- "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
- Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J
- Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J
- Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9.
the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
- Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J
- Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J
- Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J
- "United States". The World Factbook. USA. Retrieved 11 December 2011.
- Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J
- "World". The World Factbook. CIA. Retrieved 11 December 2011.
- Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J
- Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J
- "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 9 December 2011.
- Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J
- "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 26 December 2016.
- "U.S. Energy Information Administration, International Energy Generation".
- "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 26 December 2016.
- Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
- Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J
- Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J
- Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J
- Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J
- Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J
- "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Archived from the original on 17 January 2010. Retrieved 9 December 2011.
- Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" (PDF). Geology. 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2. Archived from the original (PDF) on 28 November 2007. Retrieved 6 June 2013.
The kinetic energy derived by the impact is estimated at ~5 × 1030 ergs
- Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J
- Carroll, Bradley; Ostlie, Dale (2017). An Introduction to Modern Astrophysics (2 ed.). ISBN 978-1-108-42216-1.
- "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.
- Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.
- "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
- Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.
- "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
- Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 5 November 2011.
the Earth takes 23.9345 hours to rotate
- Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J
- Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J
- "Earth's Gravitational Binding Energy". Retrieved 19 March 2012.
Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J
- "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 26 December 2016.
- Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J
-
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272 - "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
- Calculated: 5×1050 erg × 1×10−7 J/erg = 5×1043 J
- Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.CS1 maint: multiple names: authors list (link)
- Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375.
- McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734.
- Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29.
- Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641–654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641.
- url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine
- url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
- "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011.
With a power about 100 times that of the already astonishingly powerful "typical" supernova
- "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
- "Fermi's record breaking gamma-ray burst".
- Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71.
- url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
- Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.
- "Conversion from kg to J". NIST. Retrieved 4 November 2011.
- Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.
- "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 26 December 2016.CS1 maint: BOT: original-url status unknown (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.