Aroma compound

An aroma compound, also known as an odorant, aroma, fragrance, or flavor, is a chemical compound that has a smell or odor. For a chemical compound to have a smell or odor it must be sufficiently volatile to be transported to the olfactory system in the upper part of the nose.

Fragrance bottles.

Generally molecules meeting this specification have molecular weights of less than 300. Flavors affect both the sense of taste and smell, whereas fragrances affect only smell. Flavors tend to be naturally occurring, and fragrances tend to be synthetic.[1]

Aroma compounds can be found in food, wine, spices, floral scent, perfumes, fragrance oils, and essential oils. For example, many form biochemically during the ripening of fruits and other crops. In wines, most form as byproducts of fermentation. Also, many of the aroma compounds play a significant role in the production of flavorants, which are used in the food service industry to flavor, improve, and generally increase the appeal of their products.

An odorizer may add a detectable odor to a dangerous odorless substance, like propane, natural gas, or hydrogen, as a safety measure.

Aroma compounds classified by structure

Esters

Compound name Fragrance Natural occurrence Chemical structure
Geranyl acetate Fruity,
Floral
Rose
Methyl formate Ethereal
Methyl acetate Sweet, nail polish
Solvent
Methyl propionate
Methyl propanoate
Sweet, fruity, rum-like
Methyl butyrate
Methyl butanoate
Fruity Apple
Pineapple
Ethyl acetate Sweet, solvent Wine
Ethyl butyrate
Ethyl butanoate
Fruity Orange, Pineapple
Isoamyl acetate Fruity, Banana
Pear
Banana plant
Pentyl butyrate
Pentyl butanoate
Fruity Pear
Apricot
Pentyl pentanoate Fruity Apple
Octyl acetate Fruity Orange
Benzyl acetate Fruity, Strawberry Strawberries
Methyl anthranilate Fruity Grape
Hexyl acetate Floral, Fruity Apple, Plum

Linear terpenes

Compound name Fragrance Natural occurrence Chemical structure
Myrcene Woody, complex Verbena, Bay leaf
Geraniol Rose, flowery Geranium, Lemon
Nerol Sweet rose, flowery Neroli, Lemongrass
Citral, lemonal
Geranial, neral
Lemon Lemon myrtle, Lemongrass
Citronellal Lemon Lemongrass
Citronellol Lemon Lemongrass, rose
Pelargonium
Linalool Floral, sweet
Woody
Coriander, Sweet basil, Lavender, Honeysuckle
Nerolidol Woody, fresh bark Neroli, ginger
Jasmine
Ocimene Fruity, Floral Mango, Curcuma amada

Cyclic terpenes

Compound name Fragrance Natural occurrence Chemical structure
Limonene Orange Orange, lemon
Camphor Camphor Camphor laurel
Menthol Menthol Mentha
Carvone1 Caraway or Spearmint Caraway, dill,
spearmint
Terpineol Lilac Lilac, cajuput
alpha-Ionone Violet, woody Violet
Thujone Minty Wormwood, lilac,
juniper
Eucalyptol Eucalyptus Eucalyptus
Jasmone spicy, fruity, floral in dilution Jasmine, Honeysuckle

Note: Carvone, depending on its chirality, offers two different smells.

Aromatic

Compound name Fragrance Natural occurrence Chemical structure
Benzaldehyde Almond Bitter almond
Eugenol Clove Clove
Cinnamaldehyde Cinnamon Cassia
Cinnamon
Ethyl maltol Cooked fruit
Caramelized sugar
Vanillin Vanilla Vanilla
Anisole Anise Anise
Anethole Anise Anise
Sweet basil
Estragole Tarragon Tarragon
Thymol Thyme Thyme

Amines

Compound name Fragrance Natural occurrence Chemical structure
Trimethylamine Fishy
Ammonia
Putrescine
Diaminobutane
Rotting flesh Rotting flesh
Cadaverine Rotting flesh Rotting flesh
Pyridine Fishy Belladonna
Indole Fecal
Flowery
Feces
Jasmine
Skatole Fecal Feces
(diluted) Orange Blossoms

Other aroma compounds

Alcohols

Aldehydes

High concentrations of aldehydes tend to be very pungent and overwhelming, but low concentrations can evoke a wide range of aromas.

Esters

Ketones

Lactones

Thiols

  • Thioacetone (2-propanethione) A lightly studied organosulfur. Its smell is so potent it can be detected several hundred meters downwind mere seconds after a container is opened.
  • Allyl thiol (2-propenethiol; allyl mercaptan; CH2=CHCH2SH) (garlic volatiles and garlic breath)[4]
  • (Methylthio)methanethiol (CH3SCH2SH), the "mouse thiol", found in mouse urine and functions as a semiochemical for female mice[5]
  • Ethanethiol, commonly called ethyl mercaptan (added to propane or other liquefied-petroleum gases used as fuel gases)
  • 2-Methyl-2-propanethiol, commonly called tert-butyl mercaptan, is added as a blend of other components to natural gas used as fuel gas.
  • Butane-1-thiol, commonly called butyl mercaptan, is a chemical intermediate.
  • Grapefruit mercaptan (grapefruit)
  • Methanethiol, commonly called methyl mercaptan (after eating Asparagus)
  • Furan-2-ylmethanethiol, also called furfuryl mercaptan (roasted coffee)
  • Benzyl mercaptan (leek or garlic-like)

Miscellaneous compounds

Aroma-compound receptors

Animals that are capable of smell detect aroma compounds with their olfactory receptors. Olfactory receptors are cell-membrane receptors on the surface of sensory neurons in the olfactory system that detect airborne aroma compounds. Aroma compounds can then be identified by Gas Chromatography-Olfactometry (GC-O), which involves a human operator sniffing the GC effluent.[6]

In mammals, olfactory receptors are expressed on the surface of the olfactory epithelium in the nasal cavity.

Safety and regulation

In 2005–06, fragrance mix was the third-most-prevalent allergen in patch tests (11.5%).[7] 'Fragrance' was voted Allergen of the Year in 2007 by the American Contact Dermatitis Society. A recent academic study in the United States has shown that "34.7 % of the population reported health problems, such as migraine headaches and respiratory difficulties, when exposed to fragranced products".[8]

The composition of fragrances is usually not disclosed in the label of products, hiding the actual chemicals of the formula, which raises concerns among some consumers.[9] In the United States, this is because the law regulating cosmetics protects trade secrets.[10]

In the United States, fragrances are regulated by the Food and Drug Administration if present in cosmetics or drugs, by the Consumer Products Safety Commission if present in consumer products.[10] No pre-market approval is required, except for drugs. Fragrances are also generally regulated by the Toxic Substances Control Act of 1976 that "grandfathered" existing chemicals without further review or testing and put the burden of proof that a new substance is not safe on the EPA. The EPA, however, does not conduct independent safety testing but relies on data provided by the manufacturer.[11]

A 2019 study of the top-selling skin moisturizers from amazon.com, Target, and Walmart found 45% of those marketed as "fragrance-free" contained fragrance.[12]

List of chemicals used as fragrances

In 2010 the International Fragrance Association published a list of 3,059 chemicals used in 2011 based on a voluntary survey of its members. It was estimated to represent about 90% of the world's production volume of fragrances.[13]

gollark: I'm only managing about one page a second for some reason.
gollark: Working on the code still...
gollark: I'll get to 500 or so soon, I bet.
gollark: Now for automation.
gollark: Well, the cookie transplant worked.

See also

References

  1. Fahlbusch, Karl-Georg; Hammerschmidt, Franz-Josef; Panten, Johannes; Pickenhagen, Wilhelm; Schatkowski, Dietmar; Bauer, Kurt; Garbe, Dorothea; Surburg, Horst. "Flavors and Fragrances". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_141.
  2. Gane, S; Georganakis, D; Maniati, K; Vamvakias, M; Ragoussis, N; Skoulakis, EMC; Turin, L (2013). "Molecular-vibration-sensing component in human olfaction". PLOS ONE. 8 (1): e55780. Bibcode:2013PLoSO...855780G. doi:10.1371/journal.pone.0055780. PMC 3555824. PMID 23372854.
  3. Glindemann, D.; Dietrich, A.; Staerk, H.; Kuschk, P. (2005). "The Two Odors of Iron when Touched or Pickled: (Skin) Carbonyl Compounds and Organophosphines". Angewandte Chemie International Edition. 45 (42): 7006–7009. doi:10.1002/anie.200602100. PMID 17009284.
  4. Block, E. (2010). Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry. ISBN 978-0-85404-190-9.
  5. Lin, D.Y.; Zhang, S.Z.; Block, E.; Katz, L.C. (2005). "Encoding social signals in the mouse main olfactory bulb". Nature. 434 (7032): 470–477. Bibcode:2005Natur.434..470L. doi:10.1038/nature03414. PMID 15724148. S2CID 162036.
  6. Brattoli, M; Cisternino, E; Dambruoso, PR; de Gennaro, G; Giungato, P; Mazzone, A; Palmisani, J; Tutino, M (5 December 2013). "Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds". Sensors (Basel, Switzerland). 13 (12): 16759–800. doi:10.3390/s131216759. PMC 3892869. PMID 24316571.
  7. Zug KA, Warshaw EM, Fowler JF Jr, Maibach HI, Belsito DL, Pratt MD, Sasseville D, Storrs FJ, Taylor JS, Mathias CG, Deleo VA, Rietschel RL, Marks J. Patch-test results of the North American Contact Dermatitis Group 2005–2006. Dermatitis. 2009 May–Jun;20(3):149-60.
  8. Anne Steinemann, "Fragranced consumer products: exposures and effects from emissions", Air Quality, Atmosphere & Health, December 2016, Volume 9, Issue 8, pp 861–866.
  9. Anne C. Steinemann et al., "Fragranced Consumer Products: Chemicals Emitted, Ingredients Unlisted", Environmental Impact Assessment Review, Vol. 31, Issue 3, April 2011, pp. 328-333.
  10. Fragrances in Cosmetics
  11. Randall Fitzgerald (2006). The Hundred Year Lie. Dutton, 2006. p. 23. ISBN 978-0-525-94951-0.
  12. 'Hypoallergenic' And 'Fragrance-Free' Moisturizer Claims Are Often False
  13. "IFRA Survey:Transparency List". IFRA. Retrieved December 3, 2014.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.