Coastal engineering

Coastal engineering is a branch of civil engineering concerned with the specific demands posed by constructing at or near the coast, as well as the development of the coast itself.

Wave attack on Ilfracombe's sea walls during a storm.

The hydrodynamic impact of especially waves, tides, storm surges and tsunamis and (often) the harsh environment of salt seawater are typical challenges for the coastal engineer – as are the morphodynamic changes of the coastal topography, caused both by the autonomous development of the system and man-made changes. The areas of interest in coastal engineering include the coasts of the oceans, seas, marginal seas, estuaries and big lakes.

Besides the design, building and maintenance of coastal structures, coastal engineers are often interdisciplinary involved in integrated coastal zone management, also because of their specific knowledge of the hydro- and morphodynamics of the coastal system. This may include providing input and technology for e.g. environmental impact assessment, port development, strategies for coastal defense, land reclamation, offshore wind farms and other energy-production facilities, etc.

Specific challenges

Beach nourishment at the Dutch coast.

The coastal environment produces challenges specific for this branch of engineering: waves, storm surges, tides, tsunamis, sea level changes, sea water and the marine ecosystem.

Most often, in coastal engineering projects there is a need for metocean conditions: local wind and wave climate, as well as statistics for and information on other hydrodynamic quantities of interest. Also, bathymetry and morphological changes are of direct interest. In case of studies of sediment transport and morphological changes, relevant properties of the sea bed sediments, water and ecosystem properties are needed.

Long and short waves

Classification of the spectrum of ocean waves according to wave period, by Walter Munk (1950).[1]

The occurrence of wave phenomena – like sea waves, swell, tides and tsunamis – require engineering knowledge of their physics, as well as models: both numerical models and physical models. The practices in present-day coastal engineering are more-and-more based on models verified and validated by experimental data.

Apart from the wave transformations themselves, for the waves coming from deep water into the shallow coastal waters and surf zone, the effects of the waves are important. These effects include:

  • the wave loading on coastal structures like breakwaters, groynes, jetties, sea walls and dikes
  • wave-induced currents, like the longshore current in the surf zone, rip currents and Stokes drift, affecting sediment transport and morphodynamics
  • wave agitation in harbors, which may result in harbor downtime
  • wave overtopping over seawalls and dikes, which may e.g. threaten the stability of a dike
gollark: Well, that's true, see.
gollark: Typos do NOT count as correctness errors.
gollark: When have I ever been wrong?
gollark: Imagine rapidly. Little time remains.
gollark: I mean, four is three more than one.

See also

Notes

  1. Munk, W.H. (1950), Origin and generation of waves, Long Beach, California: ASCE, pp. 1–4

References

  • Dean, R.G.; Dalrymple, R.A. (2004), Coastal Processes with Engineering Applications, Cambridge University Press, ISBN 9780521602754
  • Hughes, S.A. (1993), Physical Models and Laboratory Techniques in Coastal Engineering, Advanced series on ocean engineering, World Scientific, ISBN 9789810215415
  • Kamphuis, J.W. (2010), Introduction to Coastal Engineering and Management, Advanced series on ocean engineering, World Scientific, ISBN 9789812834843
  • Kraus, N.C. (1996), History and Heritage of Coastal Engineering, American Society of Civil Engineers, ISBN 9780784474143
  • Sorensen, R. (2013), Basic Coastal Engineering, Springer, ISBN 9781475726657
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.