William Whewell

Rev Dr William Whewell DD FRS FGS FRSE (/ˈhjuːəl/ HEW-əl; 24 May 1794  6 March 1866) was an English polymath, scientist, Anglican priest, philosopher, theologian, and historian of science. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics.


William Whewell

FRS FGS
Born(1794-05-24)24 May 1794
Lancaster, Lancashire, England
Died6 March 1866(1866-03-06) (aged 71)
Alma materTrinity College, Cambridge
Known forCoining the words scientist and physicist
AwardsSmith's Prize (1816)
Royal Medal (1837)
Scientific career
FieldsPolymath, philosopher, theologian
InstitutionsTrinity College, Cambridge
InfluencesJohn Gough
John Hudson
InfluencedAugustus De Morgan
Isaac Todhunter

What is most often remarked about Whewell is the breadth of his endeavours. In a time of increasing specialization, Whewell appears a throwback to an earlier era when natural philosophers dabbled in a bit of everything. He published work in the disciplines of mechanics, physics, geology, astronomy, and economics, while also finding the time to compose poetry, author a Bridgewater Treatise, translate the works of Goethe, and write sermons and theological tracts. In mathematics, Whewell introduced what is now called the Whewell equation, an equation defining the shape of a curve without reference to an arbitrarily chosen coordinate system. He also organized thousands of volunteers internationally to study ocean tides, in what is now considered one of the first citizen science projects. He received the Royal Medal for this work in 1837.[1]

One of Whewell's greatest gifts to science was his wordsmithing. He often corresponded with many in his field and helped them come up with new terms for their discoveries. Whewell contributed the terms scientist, physicist, linguistics, consilience, catastrophism, uniformitarianism, and astigmatism[2] amongst others; Whewell suggested the terms electrode, ion, dielectric, anode, and cathode to Michael Faraday.[3]

Whewell died in Cambridge in 1866 as a result of a fall from his horse.

Life and career

Whewell was born in Lancaster, the son of John Whewell and his wife, Elizabeth Bennison.[4] His father was a master carpenter, and wished him to follow his trade, but William's success in mathematics at Lancaster and Heversham grammar schools won him an exhibition (a type of scholarship) at Trinity College, Cambridge (1812). In 1814 he was awarded the Chancellor's Gold Medal for poetry.[5] He was Second Wrangler in 1816, President of the Cambridge Union Society in 1817, became fellow and tutor of his college, and, in 1841, succeeded Christopher Wordsworth as master. He was professor of mineralogy from 1828 to 1832 and Knightbridge Professor of Philosophy (then called "moral theology and casuistical divinity") from 1838 to 1855.[6][7]

Whewell married, firstly, in 1841, Cordelia Marshall, daughter of John Marshall; she died in 1855. In 1858 he married again, to Everina Frances (née Ellis), widow of Sir Gilbert Affleck, 5th Baronet who had died in 1865.[8] Whewell died in Cambridge in 1866 as a result of a fall from his horse.;[9][10] he is buried in the chapel of Trinity College, Cambridge, whilst his wives are buried together in the Mill Road Cemetery, Cambridge. A window dedicated to Lady Affleck, his second wife, was installed in her memory in the chancel of All Saints' Church, Cambridge and made by Morris & Co.

Endeavours

History and development of science

William Whewell, c. 1860s

In 1826 and 1828, Whewell was engaged with George Airy in conducting experiments in Dolcoath mine in order to determine the density of the earth. Their united labours were unsuccessful, and Whewell did little more in the way of experimental science. He was the author, however, of an Essay on Mineralogical Classification, published in 1828, and contributed various memoirs on the tides to the Philosophical Transactions of the Royal Society between 1833 and 1850.[7]

His best-known works are two voluminous books which attempt to systematize the development of the sciences, History of the Inductive Sciences (1837) and The Philosophy of the Inductive Sciences, Founded Upon Their History (1840, 1847, 1858–60). While the History traced how each branch of the sciences had evolved since antiquity, Whewell viewed the Philosophy as the "Moral" of the previous work as it sought to extract a universal theory of knowledge through history.

In the latter, he attempted to follow Francis Bacon's plan for discovery. He examined ideas ("explication of conceptions") and by the "colligation of facts" endeavoured to unite these ideas with the facts and so construct science.[7] This colligation is an "act of thought", a mental operation consisting in bringing together a number of empirical facts by "superinducing" upon them a conception which unites the facts and renders them capable of being expressed in general laws.[11] Whewell refers to as an example Kepler and the discovery of the elliptical orbit: the orbit's points were colligated by the conception of the ellipse, not by the discovery of new facts. These conceptions are not "innate" (as in Kant), but being the fruits of the "progress of scientific thought (history) are unfolded in clearness and distinctness".[12]

Whewell's three steps of induction

Whewell analysed inductive reasoning into three steps:

  • The selection of the (fundamental) idea, such as space, number, cause, or likeness (resemblance);
  • The formation of the conception, or more special modification of those ideas, as a circle, a uniform force, etc.; and,
  • The determination of magnitudes.[7]

Upon these follow special methods of induction applicable to quantity: the method of curves, the method of means, the method of least squares and the method of residues, and special methods depending on resemblance (to which the transition is made through the law of continuity), such as the method of gradation and the method of natural classification.[7] In Philosophy of the Inductive Sciences Whewell was the first to use the term "consilience" to discuss the unification of knowledge between the different branches of learning.

Opponent of English empiricism

Here, as in his ethical doctrine, Whewell was moved by opposition to contemporary English empiricism. Following Immanuel Kant, he asserted against John Stuart Mill the a priori nature of necessary truth, and by his rules for the construction of conceptions he dispensed with the inductive methods of Mill.[7] Yet, according to Laura J. Snyder, "surprisingly, the received view of Whewell's methodology in the 20th century has tended to describe him as an anti-inductivist in the Popperian mold, that is it is claimed that Whewell endorses a 'conjectures and refutations' view of scientific discovery. Whewell explicitly rejects the hypothetico-deductive claim that hypotheses discovered by non rational guesswork can be confirmed by consequentialist testing. Whewell explained that new hypotheses are 'collected from the facts' (Philosophy of Inductive Sciences, 1849, 17)".[13] In sum, the scientific discovery is partly empirical and partly rational process; the "discovery of the conceptions is neither guesswork, nor merely a matter of observations", we infer more than we see.[14]

Whewell's neologisms

One of Whewell's greatest gifts to science was his wordsmithing. He often corresponded with many in his field and helped them come up with new terms for their discoveries. In fact, Whewell came up with the term scientist itself in 1833, and it was first published in Whewell's anonymous 1834 review of Mary Somerville's On the Connexion of the Physical Sciences published in the Quarterly Review.[15] (They had previously been known as "natural philosophers" or "men of science").

Work in college administration

Whewell was prominent not only in scientific research and philosophy, but also in university and college administration. His first work, An Elementary Treatise on Mechanics (1819), cooperated with those of George Peacock and John Herschel in reforming the Cambridge method of mathematical teaching. His work and publications also helped influence the recognition of the moral and natural sciences as an integral part of the Cambridge curriculum.[7]

In general, however, especially in later years, he opposed reform: he defended the tutorial system, and in a controversy with Connop Thirlwall (1834), opposed the admission of Dissenters; he upheld the clerical fellowship system, the privileged class of "fellow-commoners," and the authority of heads of colleges in university affairs.[7]

He opposed the appointment of the University Commission (1850), and wrote two pamphlets (Remarks) against the reform of the university (1855). He stood against the scheme of entrusting elections to the members of the senate and instead, advocated the use of college funds and the subvention of scientific and professorial work.[7]

He was elected Master of Trinity College, Cambridge in 1841, and retained that position until his death in 1866.

The Whewell Professorship of International Law and the Whewell Scholarships were established through the provisions of his will.[16][17]

Whewell's interests in architecture

Aside from Science, Whewell was also interested in the history of architecture throughout his life. He is best known for his writings on Gothic architecture, specifically his book, Architectural Notes on German Churches (first published in 1830). In this work, Whewell established a strict nomenclature for German Gothic churches and came up with a theory of stylistic development. His work is associated with the "scientific trend" of architectural writers, along with Thomas Rickman and Robert Willis.

He paid from his own resources for the construction of two new courts of rooms at Trinity College, Cambridge, built in a Gothic style. The two courts were completed in 1860 and (posthumously) in 1868, and are now collectively named Whewell's Court (in the singular).

Whewell's works in philosophy and morals

Portrait by James Lonsdale

Between 1835 and 1861 Whewell produced various works on the philosophy of morals and politics, the chief of which, Elements of Morality, including Polity, was published in 1845. The peculiarity of this work—written from what is known as the intuitional point of view—is its fivefold division of the springs of action and of their objects, of the primary and universal rights of man (personal security, property, contract, family rights and government), and of the cardinal virtues (benevolence, justice, truth, purity and order).[7]

Among Whewell's other works—too numerous to mention—were popular writings such as the third Bridgewater Treatise Astronomy and General Physics considered with reference to Natural Theology (1833), and the essay, Of the Plurality of Worlds (1853), in which he argued against the probability of life on other planets, and also the Platonic Dialogues for English Readers (1850–1861), the Lectures on the History of Moral Philosophy in England (1852), the essay, Of a Liberal Education in General, with particular reference to the Leading Studies of the University of Cambridge (1845), the important edition and abridged translation of Hugo Grotius, De jure belli ac pacis (1853), and the edition of the Mathematical Works of Isaac Barrow (1860).[18][19][7]

Whewell was one of the Cambridge dons whom Charles Darwin met during his education there, and when Darwin returned from the Beagle voyage he was directly influenced by Whewell, who persuaded Darwin to become secretary of the Geological Society of London. The title pages of On the Origin of Species open with a quotation from Whewell's Bridgewater Treatise about science founded on a natural theology of a creator establishing laws:[20]

But with regard to the material world, we can at least go so far as this—we can perceive that events are brought about not by insulated interpositions of Divine power, exerted in each particular case, but by the establishment of general laws.

Works by Whewell

  • (1831) "Review of J. Herschel's Preliminary discourse on the study of Natural Philosophy". The Quarterly Review. 45 (90): 374–407. July 1831.
  • (1833) Astronomy and general physics considered with reference to Natural Theology (Bridgewater Treatise). Cambridge.
  • (1836) Elementary Treatise on Mechanics, 5th edition, first edition 1819.
  • (1837) History of the Inductive Sciences, from the Earliest to the Present Times. 3 vols, London. Volume 1, volume 2, volume 3. 2nd ed 1847 (2 vols). 3rd ed 1857 (2 vols). 1st German ed 1840–41.
  • (1837) On the Principles of English University Education. London, 1837.[21]
  • (1840) The Philosophy of the Inductive Sciences, founded upon their history. 2 vols, London. 2nd ed 1847. Volume 1. Volume 2.
  • (1845) The Elements of Morality, including polity. 2 vols, London. Volume 1 Volume 2.
  • (1846) Lectures on systematic Morality. London.
  • (1849) Of Induction, with especial reference to Mr. J. Stuart Mill's System of Logic. London.
  • (1850) Mathematical exposition of some doctrines of political economy: second memoir. Transactions of the Cambridge Philosophical Society 9:128–49.
  • (1852) Lectures on the history of Moral Philosophy. Cambridge: Cambridge University Press.
  • (1853) Hugonis Grotii de jure belli et pacis libri tres : accompanied by an abridged translation by William Whewell, London: John W. Parker, volume 1, volume 2, volume 3.
  • (1853) Of the Plurality of Worlds. London.
  • (1857) Spedding's complete edition of the works of Bacon. Edinburgh Review 106:287–322.
  • (1858a) The history of scientific ideas. 2 vols, London.
  • (1858b) Novum Organon renovatum, London.
  • (1860a) On the philosophy of discovery: chapters historical and critical. London.
  • (1861) Plato's Republic (translation). Cambridge.
  • (1862) Six Lectures on Political Economy, Cambridge.
  • (1862) Additional Lectures on the History of Moral Philosophy, Cambridge.
  • (1866) Comte and Positivism. Macmillan's Magazine 13:353–62.

Honors and recognitions

In fiction

In the 1857 novel Barchester Towers Charlotte Stanhope uses the topic of the theological arguments, concerning the possibility of intelligent life on other planets, between Whewell and David Brewster in an attempt to start up conversation between her impecunious brother and the wealthy young widow Eleanor Bold.[24]

gollark: Replying to https://discord.com/channels/346530916832903169/348702212110680064/751873210475217017No. That would defeat the point.
gollark: Unfortunately, the installation image is highly antimemetic.
gollark: https://media.discordapp.net/attachments/348702212110680064/743987614062870668/unknown.png
gollark: broke: signal that you have lots of money with expensive cars etc.woke: signal that you have lots of computing power and/or prime finding algorithms by writing your name in ASCII art in a prime
gollark: That seems like a very meaningless... paragraph?

See also

References

  1. Cooper, Caren (20 December 2016). Citizen Science: How Ordinary People are Changing the Face of Discovery. pp. 3–8. ISBN 9781468314144.
  2. Leffler CT, Schwartz SG, Stackhouse R, Davenport B, Spetzler K (2013). "Evolution and impact of eye and vision terms in written English". JAMA Ophthalmology. 131 (12): 1625–31. doi:10.1001/jamaophthalmol.2013.917. PMID 24337558. Archived from the original on 23 December 2014.
  3. Faraday, Michael (1834). "On Electrical Decomposition". Philosophical Transactions of the Royal Society. Archived from the original on 20 July 2011. Retrieved 17 January 2010. In this article Faraday coins the words electrode, anode, cathode, anion, cation, electrolyte, and electrolyze.
  4. Biographical Index of Former Fellows of the Royal Society of Edinburgh 1783–2002 (PDF). The Royal Society of Edinburgh. July 2006. ISBN 978-0-902198-84-5.
  5. University of Cambridge (1859), A Complete Collection of the English Poems which Have Obtained the Chancellor's Gold Medal in the University of Cambridge (PDF), Cambridge: W. Metcalfe, retrieved 1 October 2008
  6. "Whewell, William (WHWL811W)". A Cambridge Alumni Database. University of Cambridge.
  7.  One or more of the preceding sentences incorporates text from a publication now in the public domain: Chisholm, Hugh, ed. (1911). "Whewell, William". Encyclopædia Britannica. 28 (11th ed.). Cambridge University Press. p. 587.
  8. Yeo, Richard. "Whewell, William". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/29200. (Subscription or UK public library membership required.)
  9. GRO Register of Deaths: MAR 1866 3b 353 CAMBRIDGE – William Whewell, aged 71
  10. Full bibliographical details are given by Isaac Todhunter, William Whewell: An Account of his Writings, with selection from his literary and scientific correspondence, London: Macmillan, 1876, (volume 1, volume 2). See also Mrs Stair Douglas The Life and Selections from the Correspondence of William Whewell, D.D., London: C. Kegan Paul & Co., 1881, at Internet Archive
  11. L.J. Snyder, entry: "W. Whewell" in "Stanford Encyclopedia of Philosophy".
  12. W. Whewell "The Philosophy of the Inductive Sciences, Founded Upon Their History" (1860, 373), London J.W. Parker.
  13. L.J. Snyder, entry: "Whewell" in "Stanford Encyclopedia of Philosophy".
  14. W. Whewell "The History of Scientific Ideas", 1858, I, 46, two volumes, London: John W. Parker.
  15. Ross, Sydney (1962). "Scientist: The story of a word" (PDF). Annals of Science. 18 (2): 65–85. doi:10.1080/00033796200202722. Retrieved 8 March 2011.CS1 maint: ref=harv (link) To be exact, the person coined the term scientist was referred to in Whewell 1834 only as "some ingenious gentleman." Ross added a comment that this "some ingenious gentleman" was Whewell himself, without giving the reason for the identification. Ross 1962, p.72.
  16. Statutes and Ordinances of the University of Cambridge. Cambridge University Press. 2009. pp. 49–50. ISBN 9780521137454.
  17. Dr. William Whewell laid in his will: "an earnest an express injunction on the occupant of this chair that he should make it his aim in all parts of his treatment of the subject, to lay down such rules and suggest such measures as might tend to diminish the evils of war and finally to extinguish war among nations. See Maine, Henry Sumner (1888). Whewell Lectures, International Law, A Series of Lectures Delivered before the University of Cambridge, 1887 (1 ed.). London: John Murray. p. 1. Retrieved 8 September 2015. via Internet Archive
  18. Grotius on the Right of War and Peace, An Abridged Translation by William Whewell, Cambridge: At the University Press, 1853 at Internet Archive
  19. The Mathematical Works of Isaac Barrow, D.D., edited for Triniity College by W. Whewell, Cambridge: At University Press, 1860, at Internet Archive
  20. Darwin, Charles (1859), On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray (The Origin of Species page ii.) Retrieved on 5 January 2007
  21. "Review of On the Principles of English University Education by William Whewell". The Quarterly Review. 59: 439–483. October 1837.
  22. "Book of Members, 1780–2010: Chapter W" (PDF). American Academy of Arts and Sciences. Retrieved 15 September 2016.
  23. "Sedgwick Museum of Earth Sciences - Whewell Mineral Gallery".
  24. Bowen, John, ed. (2014). "Explanatory notes". Barchester Towers. Oxford University Press. p. 452. ISBN 9780199665860.

Further reading

  • Heilbron, J. L. (2002), "Coming to terms", Nature (published 7 February 2002), 415 (6872), p. 585, doi:10.1038/415585a, PMID 11832919
  • Losee, J. (1983), "Whewell and Mill on the relation between philosophy of science and history of science", Studies in History and Philosophy of Science (published June 1983), 14 (2), pp. 113–126, doi:10.1016/0039-3681(83)90016-X, PMID 11615935
  • Fisch, M. (1991), William Whewell Philosopher of Science, Oxford: Oxford University Press.
  • Fisch, M. and Schaffer S. J. (eds.) (1991), William Whewell: A Composite Portrait, Oxford: Oxford University Press.
  • Henderson, James P. (1996). Early Mathematical Economics: William Whewell and the British Case. Lanham: Rowman & Littlefield. ISBN 978-0-8476-8201-0.
  • Metcalfe, J. F. (1991), "Whewell's developmental psychologism: a Victorian account of scientific progress", Studies in History and Philosophy of Science (published March 1991), 22 (1), pp. 117–139, doi:10.1016/0039-3681(91)90017-M, PMID 11622706
  • Morrison, M. (1997), "Whewell on the ultimate problem of philosophy", Studies in History and Philosophy of Science Part A, 28 (3), pp. 417–437, doi:10.1016/S0039-3681(96)00028-3
  • Ruse, M. (1975), "Darwin's debt to philosophy: an examination of the influence of the philosophical ideas of John F. W. Herschel and William Whewell on the development of Charles Darwin's theory of evolution", Studies in History and Philosophy of Science (published June 1975), 6 (2), pp. 159–181, doi:10.1016/0039-3681(75)90019-9, PMID 11615591
  • Sandoz, R. (2016), "Whewell on the classification of the sciences", Studies in History and Philosophy of Science Part A, 60, pp. 48–54, doi:10.1016/j.shpsa.2016.10.001, PMID 27938721
  • Schipper, F. (1988), "William Whewell's conception of scientific revolutions", Studies in History and Philosophy of Science Part A, 19 (1), pp. 43–53, doi:10.1016/0039-3681(88)90019-2
  • Snyder, Laura J. (2006), Reforming Philosophy: A Victorian Debate on Science and Society, Chicago: The University of Chicago Press. Includes an extensive bibliography.
  • Snyder, Laura J. (2011), The Philosophical Breakfast Club, New York: Broadway Books.
  • Whewell, W., Astronomy and General Physics Considered with Reference to Natural Theology; Bridgewater Treatises, W. Pickering, 1833 (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00012-3)
  • Whewell, W., Of the Plurality of Worlds. An Essay; J. W. Parker and son, 1853 (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00018-5)
  • Yeo, Richard. "Whewell, William (1794–1866)". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/29200. (Subscription or UK public library membership required.)
  • Yeo, R. (1991), Defining Science: William Whewell, Natural Knowledge and Public Debate in Early Victorian Britain, Cambridge: Cambridge University Press.
  • Zamecki, Stefan, Komentarze do naukoznawczych poglądów Williama Whewella (1794–1866): studium historyczno-metodologiczne [Commentaries to the Logological Views of William Whewell (1794–1866): A Historical-Methodological Study], Warsaw, Wydawnictwa IHN PAN, 2012, ISBN 978-83-86062-09-6, English-language summary: pp. 741–43.
Academic offices
Preceded by
Christopher Wordsworth
Master of Trinity College, Cambridge
1841–1866
Succeeded by
William Hepworth Thompson
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.