Anti-realism

In analytic philosophy, anti-realism is an epistemological position first articulated by British philosopher Michael Dummett. The term was coined as an argument against a form of realism Dummett saw as 'colorless reductionism'.[1]

In anti-realism, the truth of a statement rests on its demonstrability through internal logic mechanisms, such as the context principle or intuitionistic logic, in direct opposition to the realist notion that the truth of a statement rests on its correspondence to an external, independent reality.[2] In anti-realism, this external reality is hypothetical and is not assumed.[3][4]

Because it encompasses statements containing abstract ideal objects (i.e. mathematical objects), anti-realism may apply to a wide range of philosophic topics, from material objects to the theoretical entities of science, mathematical statement, mental states, events and processes, the past and the future.[5]

Varieties

Metaphysical anti-realism

One kind of metaphysical anti-realism maintains a skepticism about the physical world, arguing either: 1) that nothing exists outside the mind, or 2) that we would have no access to a mind-independent reality, even if it exists.[6] The latter case often takes the form of a denial of the idea that we can have 'unconceptualised' experiences (see Myth of the Given). Conversely, most realists (specifically, indirect realists) hold that perceptions or sense data are caused by mind-independent objects. But this introduces the possibility of another kind of skepticism: since our understanding of causality is that the same effect can be produced by multiple causes, there is a lack of determinacy about what one is really perceiving, as in the brain in a vat scenario. The main alternative to this sort of metaphysical anti-realism is metaphysical realism.

On a more abstract level, model-theoretic anti-realist arguments hold that a given set of symbols in a theory can be mapped onto any number of sets of real-world objectseach set being a "model" of the theory—provided the relationship between the objects is the same (compare with symbol grounding.)

In ancient Greek philosophy, nominalist (anti-realist) doctrines about universals were proposed by the Stoics, especially Chrysippus.[7][8] In early modern philosophy, conceptualist anti-realist doctrines about universals were proposed by thinkers like René Descartes, John Locke, Baruch Spinoza, Gottfried Wilhelm Leibniz, George Berkeley, and David Hume.[9][10] In late modern philosophy, anti-realist doctrines about knowledge were proposed by the German idealist Georg Wilhelm Friedrich Hegel. Hegel was a proponent of what is now called inferentialism: he believed that the ground for the axioms and the foundation for the validity of the inferences are the right consequences and that the axioms do not explain the consequence.[11] Kant and Hegel held conceptualist views about universals.[12][13] In contemporary philosophy, anti-realism was revived in the form of empirio-criticism, logical positivism, semantic anti-realism and scientific instrumentalism (see below).

Mathematical anti-realism

In the philosophy of mathematics, realism is the claim that mathematical entities such as 'number' have an observer-independent existence. Empiricism, which associates numbers with concrete physical objects, and Platonism, in which numbers are abstract, non-physical entities, are the preeminent forms of mathematical realism.

The "epistemic argument" against Platonism has been made by Paul Benacerraf and Hartry Field. Platonism posits that mathematical objects are abstract entities. By general agreement, abstract entities cannot interact causally with physical entities ("the truth-values of our mathematical assertions depend on facts involving platonic entities that reside in a realm outside of space-time"[14]) Whilst our knowledge of physical objects is based on our ability to perceive them, and therefore to causally interact with them, there is no parallel account of how mathematicians come to have knowledge of abstract objects.[15][16][17]

Field developed his views into fictionalism. Benacerraf also developed the philosophy of mathematical structuralism, according to which there are no mathematical objects. Nonetheless, some versions of structuralism are compatible with some versions of realism.

Counterarguments

Anti-realist arguments hinge on the idea that a satisfactory, naturalistic account of thought processes can be given for mathematical reasoning. One line of defense is to maintain that this is false, so that mathematical reasoning uses some special intuition that involves contact with the Platonic realm, as in the argument given by Sir Roger Penrose.[18]

Another line of defense is to maintain that abstract objects are relevant to mathematical reasoning in a way that is non causal, and not analogous to perception. This argument is developed by Jerrold Katz in his 2000 book Realistic Rationalism. In this book, he put forward a position called realistic rationalism, which combines metaphysical realism and rationalism.

A more radical defense is to deny the separation of physical world and the platonic world, i.e. the mathematical universe hypothesis (a variety of mathematicism). In that case, a mathematician's knowledge of mathematics is one mathematical object making contact with another.

Semantic anti-realism

The term "anti-realism" was introduced by Michael Dummett in his 1982 paper "Realism" in order to re-examine a number of classical philosophical disputes, involving such doctrines as nominalism, Platonic realism, idealism and phenomenalism. The novelty of Dummett's approach consisted in portraying these disputes as analogous to the dispute between intuitionism and Platonism in the philosophy of mathematics.

According to intuitionists (anti-realists with respect to mathematical objects), the truth of a mathematical statement consists in our ability to prove it. According to Platonic realists, the truth of a statement is proven in its correspondence to objective reality. Thus, intuitionists are ready to accept a statement of the form "P or Q" as true only if we can prove P or if we can prove Q. In particular, we cannot in general claim that "P or not P" is true (the law of excluded middle), since in some cases we may not be able to prove the statement "P" nor prove the statement "not P". Similarly, intuitionists object to the existence property for classical logic, where one can prove , without being able to produce any term of which holds.

Dummett argues that this notion of truth lies at the bottom of various classical forms of anti-realism, and uses it to re-interpret phenomenalism, claiming that it need not take the form of reductionism.

Dummett's writings on anti-realism draw heavily on the later writings of Ludwig Wittgenstein, concerning meaning and rule following, and can be seen as an attempt to integrate central ideas from the Philosophical Investigations into the constructive tradition of analytic philosophy deriving from Gottlob Frege.

Scientific anti-realism

In philosophy of science, anti-realism applies chiefly to claims about the non-reality of "unobservable" entities such as electrons or genes, which are not detectable with human senses.[19][20]

One prominent variety of scientific anti-realism is instrumentalism, which takes a purely agnostic view towards the existence of unobservable entities, in which the unobservable entity X serves as an instrument to aid in the success of theory Y and does not require proof for the existence or non-existence of X.

Some scientific anti-realists, however, deny that unobservables exist, even as non-truth conditioned instruments.

Moral anti-realism

In the philosophy of ethics, moral anti-realism (or moral irrealism) is a meta-ethical doctrine that there are no objective moral values or normative facts. It is usually defined in opposition to moral realism, which holds that there are objective moral values, which any moral claim are either true or false.[21] Examples of anti-realist moral theories might be:[22][21]

Epistemic anti-realism

Much like moral anti-realism, epistemic anti-realism asserts the nonexistence of facts about certain normative facts, but in the domain of epistemology rather than that in ethics.[23] Thus, the two are now sometimes grouped together as "metanormative anti-realism".[23] Prominent defenders of epistemic anti-realism include Hartry Field, Simon Blackburn, Matthew Chrisman, and Allan Gibbard, among others.[23]

gollark: Oh, by red I mean not unred.
gollark: Any image which does not contain red does not contain red.
gollark: Sure, that might be "obviously a tautology" and "an unhelpful thing to say", but too bad.
gollark: Purely nonred colors.
gollark: Okay, fiiiiiiine, just any picture which isn't purely black or purely a nonred color.

See also

References

  1. Realism (1963) p. 145
  2. Realism (1963) p. 146
  3. Truth (1959) p. 24 (postscript)
  4. Blackburn, Simon ([2005] 2008). "realism/anti-realism," The Oxford Dictionary of Philosophy, 2nd ed. revised, pp. 308–9. Oxford.
  5. Realism (1963) pp. 147–8
  6. Karin Johannesson, God Pro Nobis: On Non-metaphysical Realism and the Philosophy of Religion, Peeters Publishers, 2007, p. 26.
  7. John Sellars, Stoicism, Routledge, 2014, pp. 84–85: "[Stoics] have often been presented as the first nominalists, rejecting the existence of universal concepts altogether. ... For Chrysippus there are no universal entities, whether they be conceived as substantial Platonic Forms or in some other manner.".
  8. Chrysippus – Internet Encyclopedia of Philosophy
  9. David Bostock, Philosophy of Mathematics: An Introduction, Wiley-Blackwell, 2009, p. 43: "All of Descartes, Locke, Berkeley, and Hume supposed that mathematics is a theory of our ideas, but none of them offered any argument for this conceptualist claim, and apparently took it to be uncontroversial."
  10. Stefano Di Bella, Tad M. Schmaltz (eds.), The Problem of Universals in Early Modern Philosophy, Oxford University Press, 2017, p. 64 "there is a strong case to be made that Spinoza was a conceptualist about universals" and p. 207 n. 25: "Leibniz's conceptualism [is related to] the Ockhamist tradition..."
  11. P. Stekeler-Weithofer (2016), "Hegel's Analytic Pragmatism", University of Leipzig, pp. 122–4.
  12. Oberst, Michael. 2015. "Kant on Universals." History of Philosophy Quarterly 32(4):335–352.
  13. A. Sarlemijn, Hegel's Dialectic, Springer, 1975, p. 21.
  14. Field, Hartry, 1989, Realism, Mathematics, and Modality, Oxford: Blackwell, p. 68
  15. "Since abstract objects are outside the nexus of causes and effects, and thus perceptually inaccessible, they cannot be known through their effects on us" — Jerrold Katz, Realistic Rationalism, 2000, p. 15
  16. "Philosophy Now: "Mathematical Knowledge: A dilemma"". Archived from the original on 2011-02-07. Retrieved 2011-02-14.
  17. Stanford Encyclopedia of Philosophy
  18. Review of The Emperor's New Mind
  19. Hacking, Ian (1999). The Social Construction Of What?. Harvard University Press. p. 84.
  20. Okasha, Samir (2002). Philosophy of Science: A Very Short Introduction. Oxford University Press.
  21. "Moral Anti-Realism - By Branch / Doctrine - The Basics of Philosophy". www.philosophybasics.com. Retrieved 2019-07-25.
  22. Joyce, Richard (2016), Zalta, Edward N. (ed.), "Moral Anti-Realism", The Stanford Encyclopedia of Philosophy (Winter 2016 ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-07-25
  23. "Metaepistemology". Internet Encyclopedia of Philosophy. Retrieved 24 June 2020.

Bibliography

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.