List of quasars
Proper naming of quasars are by Catalogue Entry, Qxxxx±yy using B1950 coordinates, or QSO Jxxxx±yyyy using J2000 coordinates. They may also use the prefix QSR. There are currently no quasars that are visible to the naked eye.
This is a list of quasars.
List of quasars
This is a list of exceptional quasars for characteristics otherwise not separately listed
Quasar | Notes |
---|---|
Twin Quasar | Associated with a possible planet microlensing event in the gravitational lens galaxy that is doubling the Twin Quasar's image. |
QSR J1819+3845 | Proved interstellar scintillation due to the interstellar medium. |
CTA-102 | In 1965, Soviet astronomer Nikolai S. Kardashev declared that this quasar was sending coded messages from an alien civilization.[1] |
CID-42 | Its Supermassive black hole is being ejected and will one day become a displaced quasar. |
TON 618 | TON 618 is a very distant and extremely luminous quasar—technically, a hyperluminous, broad-absorption line, radio-loud quasar—located near the North Galactic Pole in the constellation Canes Venatici. |
List of named quasars
This is a list of quasars, with a common name, instead of a designation from a survey, catalogue or list.
Quasar | Origin of name | Notes |
---|---|---|
Twin Quasar | From the fact that two images of the same gravitationally lensed quasar is produced. | |
Einstein Cross | From the fact that gravitational lensing of the quasar forms a near perfect Einstein cross, a concept in gravitational lensing. | |
Triple Quasar | From the fact that there are three bright images of the same gravitationally lensed quasar. | There are actually four images; the fourth is faint. |
Cloverleaf | From its appearance having similarity to the leaf of a clover. It has been gravitationally lensed into four images, of roughly similar appearance. | |
Teacup galaxy | The name comes from the shape of the extended emission, which is shaped like the handle of a teacup. The handle is a bubble shaped by quasar winds or small-scale radio jets. | Low redshift, highly obscured type 2 quasar. |
List of multiply imaged quasars
This is a list of quasars that as a result of gravitational lensing appear as multiple images on Earth.
Quasar | Images | Lens | Notes |
---|---|---|---|
Twin Quasar | 2 | YGKOW G1 | First gravitationally lensed object discovered |
Triple Quasar (PG 1115+080) | 4 | Originally discovered as 3 lensed images, the fourth image is faint. It was the second gravitationally lensed quasar discovered. | |
Einstein Cross | 4 | Huchra's Lens | First Einstein Cross discovered |
RX J1131-1231's quasar | 4 | RX J1131-1231's elliptical galaxy | RX J1131-1231 is the name of the complex, quasar, host galaxy and lensing galaxy, together. The quasar's host galaxy is also lensed into a Chwolson ring about the lensing galaxy. The four images of the quasar are embedded in the ring image. |
Cloverleaf | 4[2] | Brightest known high-redshift source of CO emission[3] | |
QSO B1359+154 | 6 | CLASS B1359+154 and three more galaxies | First sextuply-imaged galaxy |
SDSS J1004+4112 | 5 | Galaxy cluster at z = 0.68 | First quasar discovered to be multiply image-lensed by a galaxy cluster and currently the third largest quasar lens with the separation between images of 15 ″[4][5][6] |
SDSS J1029+2623 | 3 | Galaxy cluster at z = 0.6 | The current largest-separatioon quasar lens with 22.6 ″ separation between furthest images[7][8][9] |
SDSS J2222+2745 | 6[10] | Galaxy cluster at z = 0.49[11] | First sextuply-lensed galaxy[10] Third quasar discovered to be lensed by a galaxy cluster.[11] Quasar located at z = 2.82[11] |
List of visual quasar associations
This is a list of double quasars, triple quasars, and the like, where quasars are close together in line-of-sight, but not physically related.
Quasars | Count | Notes |
---|---|---|
QSO 1548+115
|
2 | [12][13] |
QSO 1146+111 | 8 | [14] |
|
List of physical quasar groups
This is a list of binary quasars, trinary quasars, and the like, where quasars are physically close to each other.
Quasars | Count | Notes |
---|---|---|
quasars of SDSS J0841+3921 protocluster | 4 | First quasar quartet discovered.[15][16] |
LBQS 1429-008 (QQQ 1432-0106) | 3 | First quasar triplet discovered. It was first discovered as a binary quasar, before the third quasar was found.[17] |
QQ2345+007 (Q2345+007)
|
2 | Originally thought to be a doubly imaged quasar, but actually a quasar couplet.[18] |
QQQ J1519+0627 | 3 | [19] |
Large Quasar Groups
Large quasar groups (LQGs) are bound to a filament of mass, and not directly bound to each other.
LQG | Count | Notes |
---|---|---|
Webster LQG (LQG 1) |
5 | First LQG discovered. At the time of its discovery, it was the largest structure known.[20][21] |
Huge-LQG (U1.27) |
73 | The largest structure known in the observable universe, as of 2013.[22][23] |
List of quasars with apparent superluminal jet motion
This is a list of quasars with jets that appear to be superluminal due to relativistic effects and line-of-sight orientation. Such quasars are sometimes referred to as superluminal quasars.
Quasar | Superluminality | Notes |
---|---|---|
3C 279 | 4c | First quasar discovered with superluminal jets.[24][25][26][27][28] |
3C 179 | 7.6c | Fifth discovered, first with double lobes[29] |
3C 273 | This is also the first quasar ever identified.[30] | |
3C 216 | ||
3C 345 | [30][31] | |
3C 380 | ||
4C 69.21 (Q1642+690, QSO B1642+690) |
||
8C 1928+738 (Q1928+738, QSO J1927+73, Quasar J192748.6+735802) |
||
PKS 0637-752 | ||
QSO B1642+690 |
Quasars that have a recessional velocity greater than the speed of light (c) are very common. Any quasar with z>1 is going away from us in excess of c.[32] Early attempts to explain superlumic quasars resulted in convoluted explanations with a limit of z = 2.326, or in the extreme z<2.4.[33] z = 1 means a redshift indicating travel away from us at the speed of light. The majority of quasars lie between z = 2 and z = 5 .
Firsts
Title | Quasar | Year | Data | Notes |
---|---|---|---|---|
First "star" discovered later found to be a quasar | ||||
First radio source discovered later found to be a quasar | ||||
First quasar discovered | 3C 48 | 1960 | first radio source for which optical identification was found, that was a star-like looking object | |
First quasar identified | 3C 273 | 1962 | first radio-"star" found to be at a high redshift with a non-stellar spectrum. | |
First radio-quiet quasar | QSO B1246+377 (BSO 1) | 1965 | The first radio-quiet quasi-stellar objects (QSO) were called Blue Stellar Objects or BSO, because they appeared like stars and were blue in color. They also had spectra and redshifts like radio-loud quasi-stellar radio-sources (QSR), so became quasars.[26][34][35] | |
First host galaxy of a quasar discovered | 3C 48 | 1982 | ||
First quasar found to seemingly not have a host galaxy | HE0450-2958 (Naked Quasar) | 2005 | Some disputed observations suggest a host galaxy, others do not. | |
First multi-core quasar | PG 1302-102 | 2014 | Binary supermassive black holes within the quasar | [36][37] |
First quasar containing a recoiling supermassive black hole | SDSS J0927+2943 | 2008 | Two optical emission line systems separated by 2650 km/s | |
First gravitationally lensed quasar identified | Twin Quasar | 1979 | Lensed into 2 images | The lens is a galaxy known as YGKOW G1 |
First quasar found with a jet with apparent superluminal motion | 3C 279 | 1971 | [24][25][26] | |
First quasar found with the classic double radio-lobe structure | 3C 47 | 1964 | ||
First quasar found to be an X-ray source | 3C 273 | 1967 | [38] | |
First "dustless" quasar found | QSO J0303-0019 and QSO J0005-0006 | 2010 | [39][40][41][42][43][44][45] | |
First Large Quasar Group discovered | Webster LQG (LQG 1) |
1982 | [20][21] | |
Extremes
Title | Quasar | Data | Notes |
---|---|---|---|
Brightest | 3C 273 | Apparent magnitude of ~12.9 | Absolute magnitude: −26.7 |
Seemingly optically brightest | APM 08279+5255 | Seeming absolute magnitude of −32.2 | This quasar is gravitationally lensed; its actual absolute magnitude is estimated to be −30.5 |
Most luminous | 3C 454.3 | Absolute magnitude of −31.4 | One of the brightest gamma ray sources in the sky |
Most powerful quasar radio source | 3C 273 | Also the most powerful radio source in the sky | |
Most powerful | |||
Most variable quasar radio source | QSO J1819+3845 (Q1817+387) | Also the most variable extrasolar radio source | |
Least variable quasar radio source | |||
Most variable quasar optical source | |||
Least variable quasar optical source | |||
Most distant | ULAS J1342+0928 | z = 7.54 | [46] |
Most distant radio-quiet quasar | |||
Most distant radio-loud quasar | QSO J1427+3312 | z = 6.12 | Found June 2008[47][48] |
Most distant blazar quasar | PSO J0309+27 | z > 6 | |
Least distant | Markarian 231 | 600 Mly | [49] inactive: IC 2497 |
Largest Large Quasar Group | Huge-LQG (U1.27) |
73 quasars | [22][23] |
First quasars found
Rank | Quasar | Date of discovery | Notes |
---|---|---|---|
1 | 3C 273 | 1963 | [50] |
2 | 3C 48 | 1963 | [50] |
3 | 3C 47 | 1964 | [50] |
3 | 3C 147 | 1964 | [50] |
5 | CTA 102 | 1965 | [51] |
5 | 3C 287 | 1965 | [51] |
5 | 3C 254 | 1965 | [51] |
5 | 3C 245 | 1965 | [51] |
5 | 3C 9 | 1965 | [51] |
These are the first quasars which were found and had their redshifts determined. |
Most distant quasars
Quasar | Distance | Notes | |
---|---|---|---|
ULAS J1342+0928 | z = 7.54 | Currently the most distant known quasar.[46] | |
ULAS J1120+0641 (ULAS J112001.48+064124.3) |
z = 7.085 | Former most distant quasar. First quasar with redshift over 7.[52] | |
CHFQS J2348-3054 (CHFQS J234833.34-305410.0) |
z = 6.90 | ||
CFHQS J2329-0301 (CFHQS J232908-030158) |
z = 6.43 | Former most distant quasar[53][54][55][56] | |
SDSS J114816.64+525150.3 (SDSS J1148+5251) |
z = 6.419 | Former most distant quasar[57][58][59][56][60][61] | |
SDSS J1030+0524 (SDSSp J103027.10+052455.0) |
z = 6.28 | Former most distant quasar. First quasar with redshift over 6.[62][60][63][64][65][66][67] | |
SDSS J104845.05+463718.3 (QSO J1048+4637) |
z = 6.23 | [61] | |
SDSS J162331.81+311200.5 (QSO J1623+3112) |
z = 6.22 | [61] | |
CFHQS J0033-0125 (CFHQS J003311-012524) |
z = 6.13 | [54] | |
SDSS J125051.93+313021.9 (QSO J1250+3130) |
z = 6.13 | [61] | |
CFHQS J1509-1749 (CFHQS J150941-174926) |
z = 6.12 | [54] | |
QSO B1425+3326 / QSO J1427+3312 | z = 6.12 | Most distant radio-quasar[47][68] | |
SDSS J160253.98+422824.9 (QSO J1602+4228) |
z = 6.07 | [61] | |
SDSS J163033.90+401209.6 (QSO J1630+4012) |
z = 6.05 | [61] | |
CFHQS J1641+3755 (CFHQS J164121+375520) |
z = 6.04 | [54] | |
SDSS J113717.73+354956.9 (QSO J1137+3549) |
z = 6.01 | [61] | |
SDSS J081827.40+172251.8 (QSO J0818+1722) |
z = 6.00 | For reference[61] | |
SDSSp J130608.26+035626.3 (QSO J1306+0356) |
z = 5.99 | For reference[65][66][67] | |
|
Type | Quasar | Date | Distance | Notes |
---|---|---|---|---|
Most distant | ULAS J1342+0928 | 2017 | z = 7.54 | [46] |
Most distant radio loud quasar | QSO B1425+3326 / QSO J1427+3312 | 2008 | z = 6.12 | |
Most distant radio quiet quasar | z = | |||
Most distant OVV quasar | z = | |||
|
Quasar | Date | Distance | Notes |
---|---|---|---|
ULAS J1342+0928 | 2017–present | z = 7.54 | Current record holder.[46] |
ULAS J1120+0641 | 2011–2017 | z = 7.085 | This was not the most distant object when discovered. This was the first quasar found beyond redshift 7.[52] |
CFHQS J2329-0301 (CFHQS J232908-030158) |
2007–2011 | z = 6.43 | This was not the most distant object when discovered. It did not exceed IOK-1 (z = 6.96), which was discovered in 2006.[53][54][55][56][70][71][72] |
SDSS J114816.64+525150.3 (SDSS J1148+5251) |
2003–2007 | z = 6.419 | This was not the most distant object when discovered. It did not exceed HCM 6A galaxy lensed by Abell 370 at z = 6.56, discovered in 2002. Also discovered around the time of discovery was a new most distant galaxy, SDF J132418.3+271455 at z = 6.58.[57][58][59][56][70][73][74][75][76][77] |
SDSS J1030+0524 (SDSSp J103027.10+052455.0) |
2001–2003 | z = 6.28 | This was the most distant object when discovered. This was the first object beyond redshift 6 when discovered.[62][60][63][64][66][67] |
SDSS 1044-0125 (SDSSp J104433.04-012502.2) |
2000–2001 | z = 5.82 | This was the most distant object discovered at the time of discovery. It exceeded galaxy SSA22-HCM1 (z = 5.74) as the most distant object (discovered 1999).[78][79][66][67][70][80][81] |
RD300 (RD J030117+002025) |
2000 | z = 5.50 | MB = −22.7 This was not the most distant object discovered at time of discovery. It did not surpass galaxy SSA22-HCM1 (z = 5.74) (discovered 1999).[82][83][79][84][70] |
SDSSp J120441.73−002149.6 (SDSS J1204-0021) |
2000 | z = 5.03 | This was not the most distant object discovered at time of discovery. It did not surpass galaxy SSA22-HCM1 (z = 5.74) (discovered 1999).[84][70] |
SDSSp J033829.31+002156.3 (QSO J0338+0021) |
1998–2000 | z = 5.00 | This was the first quasar discovered breaking redshift 5. This was not the most distant object discovered at time of discovery. It did not exceed the galaxy BR1202-0725 LAE at z = 5.64 discovered earlier in 1998.[70][78][85][86][87][88][89] |
PC 1247+3406 | 1991–1998 | z = 4.897 | This was the most distant object discovered at time of discovery.[78][90][91][92][93] |
PC 1158+4635 | 1989–1991 | z = 4.73 | This was the most distant object discovered at the time of discovery.[78][93][94][95][96][97] |
Q0051-279 | 1987–1989 | z = 4.43 | This was the most distant object discovered at the time of discovery.[98][94][97][99][100][101] |
Q0000-26 (QSO B0000-26) |
1987 | z = 4.11 | This was the most distant object discovered at the time of discovery.[98][94][102] |
PC 0910+5625 (QSO B0910+5625) |
1987 | z = 4.04 | This was the most distant object discovered at the time of discovery. This was the second quasar discovered with a redshift over 4.[78][94][103][104] |
Q0046–293 (QSO J0048-2903) |
1987 | z = 4.01 | First quasar discovered with a redshift over 4. This was the most distant object discovered at the time of discovery.[98][94][103][105][106] |
Q1208+1011 (QSO B1208+1011) |
1986–1987 | z = 3.80 | This was the most distant object discovered at the time of discovery. This is also a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45 ″.[103][107][108] |
PKS 2000-330 (QSO J2003-3251, Q2000-330) |
1982–1986 | z = 3.78 | This was the most distant object discovered at the time of discovery.[32][103][109][110] |
OQ172 (QSO B1442+101) |
1974–1982 | z = 3.53 | This was the most distant object discovered at the time of discovery.[111][112][113] |
OH471 (QSO B0642+449) |
1973–1974 | z = 3.408 | First quasar discovered with a redshift greater than 3. Nickname was "the blaze marking the edge of the universe". This was the most distant object discovered at the time of discovery.[111][113][114][115][116] |
4C 05.34 | 1970–1973 | z = 2.877 | This was the most distant object discovered at the time of discovery. Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious.[32][33][113][117][118] |
5C 02.56 (7C 105517.75+495540.95) |
1968–1970 | z = 2.399 | This was the most distant object when discovered.[118][119][120] |
4C 25.05 (4C 25.5) |
1968 | z = 2.358 | This was the most distant object when discovered.[118][120][121] |
PKS 0237-23 (QSO B0237-2321) |
1967–1968 | z = 2.225 | This was the most distant object discovered at the time of discovery.[32][121][122][123][124] |
4C 12.39 (Q1116+12, PKS 1116+12) |
1966–1967 | z = 2.1291 | This was the most distant object when discovered.[120][124][125][126] |
4C 01.02 (Q0106+01, PKS 0106+1) |
1965–1966 | z = 2.0990 | This was the most distant object when it was discovered.[120][124][125][127] |
3C 9 | 1965 | z = 2.018 | This was the most distant object discovered at the time of discovery. This was the first quasar with a redshift in excess of 2.[128][34][124][129][130][131] |
3C 147 | 1964–1965 | z = 0.545 | This was the first quasar to become the most distant object in the universe, beating radio galaxy 3C 295.[132][133][134][135][136] |
3C 48 | 1963–1964 | z = 0.367 | Redshift was discovered after publication of 3C273's results prompted researchers to re-examine spectroscopic data. This was the second quasar redshift measured. This not the most distant object discovered at the time of discovery. The radio galaxy 3C 295 was found in 1960 to be at z = 0.461[26][32][137][138][139][50][132] |
3C 273 | 1963 | z = 0.158 | First redshift identified for a quasar. This was not the most distant object discovered at the time of discovery. The radio galaxy 3C 295 was found in 1960 to be at z = 0.461[26][50][138][139][140] |
|
The first time that quasars became the most distant object in the universe was in 1964. Quasars would remain the most distant objects in the universe until 1997, when a pair of non-quasar galaxies would take the title. (galaxies CL 1358+62 G1 & CL 1358+62 G2 lensed by galaxy cluster CL 1358+62)[120]
Most powerful quasars
Rank | Quasar | Data | Notes |
---|---|---|---|
1 | SMSS J215728.21-360215.1 | It has an intrinsic bolometric luminosity of ~ 6.9 × 1014 Suns or ~ 2.6 × 1041 watts | [141] |
2 | HS 1946+7658 | It has an intrinsic bolometric luminosity in excess of 1014 Suns or 1041 watts | [142][143] |
3 | SDSS J155152.46+191104.0 | Has over 1041 watts luminosity | [144][145] |
4 | HS 1700+6416 | Has a luminosity of over 1041 watts | [146] |
5 | SDSS J010013.02+280225.8 | Has a luminosity of around 1.62 × 1041 watts | [147] |
6 | SBS 1425+606 | Has a luminosity of over 1041 watts – optically brightest for z>3 | [148] |
7 | SDSS J074521.78+473436.2 | [149][150] | |
8 | S5 0014+813 | [146][151] | |
7 | SDSS J160455.39+381201.6 | z = 2.51, M(i) = 15.84 | |
9 | SDSS J085543.40-001517.7 | [152] | |
External links
Footnotes
- "Toward the Edge of the Universe". Time Magazine. 21 May 1965.
- Magain, P.; Surdej, J.; Swings, J.-P.; Borgeest, U.; Kayser, R. (1988). "Discovery of a quadruply lensed quasar - The 'clover leaf' H1413 + 117". Nature. 334 (6180): 325–327. Bibcode:1988Natur.334..325M. doi:10.1038/334325a0.
- Venturini, S.; Solomon, P. M. (2003). "The Molecular Disk in the Cloverleaf Quasar". The Astrophysical Journal. 590 (2): 740–745. arXiv:astro-ph/0210529. Bibcode:2003ApJ...590..740V. doi:10.1086/375050.
- Inada, N.; et al. (2003). "A Gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds". Nature. 426 (6968): 810–812. arXiv:astro-ph/0312427. Bibcode:2003Natur.426..810I. doi:10.1038/nature02153.
- Oguri, M.; et al. (2004). "Observations and Theoretical Implications of the Large-Separation Lensed Quasar SDSS J1004+4112". The Astrophysical Journal. 605: 78–97. arXiv:astro-ph/0312429. Bibcode:2004ApJ...605...78O. doi:10.1086/382221.
- Inada, N.; et al. (2005). "Discovery of a Fifth Image of the Large Separation Gravitationally Lensed Quasar SDSS J1004+4112". Publications of the Astronomical Society of Japan. 57 (3): L7–L10. arXiv:astro-ph/0503310. Bibcode:2005PASJ...57L...7I. doi:10.1093/pasj/57.3.L7.
- Inada, Naohisa; et al. (2006). "SDSS J1029+2623: A Gravitationally Lensed Quasar with an Image Separation of 22."5". The Astrophysical Journal. 653 (2): L97. arXiv:astro-ph/0611275. Bibcode:2006ApJ...653L..97I. doi:10.1086/510671.
- Oguri, Masamune; et al. (2008). "The Third Image of the Large-Separation Lensed Quasar SDSS J1029+2623". The Astrophysical Journal. 676: L1. arXiv:0802.0002. Bibcode:2008ApJ...676L...1O. doi:10.1086/586897.
- Kratzer, Rachael M; et al. (2011). "Analyzing the Flux Anomalies of the Large-Separation Lensed Quasar SDSS J1029+2623". The Astrophysical Journal. 728: L18. arXiv:1008.2315. Bibcode:2011ApJ...728L..18K. doi:10.1088/2041-8205/728/1/L18.
- ScienceDaily, "Quasar Observed in Six Separate Light Reflections", 7 August 2013
- Dahle, H.; et al. (2013). "SDSS J2222+2745: A Gravitationally Lensed Sextuple Quasar with a Maximum Image Separation of 15.″1 Discovered in the Sloan Giant Arcs Survey". The Astrophysical Journal. 773 (2): 146. arXiv:1211.1091. Bibcode:2013ApJ...773..146D. doi:10.1088/0004-637X/773/2/146.
- SIMBAD, Object query : QSO 1548+115
- Burke, Bernard F. (1986). "Gravitational lenses - Observations". Quasars, Proceedings of the IAU Symposium, Bangalore, India, 2–6 December 1985. D. Reidel Publishing Co. p. 517. Bibcode:1986IAUS..119..517B.
- SIMBAD, Object query : QSO 1146+111
- Space Daily, "Astronomers Baffled by Discovery of Rare Quasar Quartet", 18 May 2015
- Hennawi, Joseph F.; Prochaska, J. Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio (15 May 2015). "Quasar Quartet Embedded in Giant Nebula Reveals Rare Massive Structure in Distant Universe". Science. 348 (6236): 779–783. arXiv:1505.03786. Bibcode:2015Sci...348..779H. doi:10.1126/science.aaa5397. PMID 25977547.
- Robert Naeye (10 January 2007). "The First Triple Quasar". Sky & Telescope.
- Alan MacRobert (7 July 2006). "Binary Quasar Is No Illusion". Sky & Telescope.
- SpaceDaily, "Extremely rare triple quasar found", 14 March 2013 (accessed 14 March 2013)
- Webster, A (1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683. Bibcode:1982MNRAS.199..683W. doi:10.1093/mnras/199.3.683.
- Clowes, Roger (2001). "Large Quasar Groups - A Short Review". In Clowes, Roger; Adamson, Andrew; Bromage, Gordon (eds.). The new era of wide field astronomy : proceedings of a conference held at the Centre for Astrophysics, University of Central Lancashire, Preston, United Kingdom, 21-24 August 2000. Astronomical Society of the Pacific. Bibcode:2001ASPC..232..108C. ISBN 1-58381-065-X.
- Clowes, Roger G.; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Soechting, Ilona K.; Graham, Matthew J. (2013). "A structure in the early universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 429 (4): 2910–2916. arXiv:1211.6256. Bibcode:2013MNRAS.429.2910C. doi:10.1093/mnras/sts497.
- ScienceDaily, "Biggest Structure in Universe: Large Quasar Group Is 4 Billion Light Years Across", Royal Astronomical Society, 11 January 2013 (accessed 13 January 2013)
- Unwin, Stephen C. (1987). "Superluminal motion in the quasar 3C279". Superluminal radio sources; Proceedings of the Workshop, Pasadena, Calif., 28–30 October 1986. Cambridge University Press. pp. 34–39. Bibcode:1987slrs.work...34U.
- Preuss, E. (2002). "The Beginnings of VLBI at the 100-m Radio Telescope". In E. Ros; R. W. Porcas; A. P. Lobanov; J. A. Zensus (eds.). 6th European VLBI Network Symposium on New Developments in VLBI Science and Technology, held in Bonn, 25–28 June 25 2002. Max-Planck-Institut für Radioastronomie. p. 1. Bibcode:2002evn..conf....1P.
- Collin, Suzy (2006). "Quasars and Galactic Nuclei, a Half-Century Agitated Story". AIP Conference Proceedings. 861: 587. arXiv:astro-ph/0604560. Bibcode:2006AIPC..861..587C. doi:10.1063/1.2399629.
- New Scientist, Quasar jets and cosmic engines: Some galaxies spew out vast amounts of material into space at velocities close to that of light. Astronomers still don't know why, 16 March 1991
- The superluminal radio source in the gamma-ray blazar 3C 279
- Porcas, R. W (1981). "Superluminal quasar 3C179 with double radio lobes". Nature. 294 (5836): 47. Bibcode:1981Natur.294...47P. doi:10.1038/294047a0.
- Daily Intelligencer, The May 29, 1981 ;
- Walter Sullivan (27 December 1983). "If Nothing Is Faster than Light, What's Going on?". The New York Times. p. C1.
- The Structure of the Physical Universe, Volume III - The Universe of Motion, CHAPTER 23 - Quasar Redshifts Archived 2008-06-19 at the Wayback Machine, by Dewey Bernard Larson, Library of Congress Catalog Card No. 79-88078, ISBN 0-913138-11-8 , Copyright © 1959, 1971, 1984
- Quasars and Pulsars, Dewey Bernard Larson, (c) 1971 ; CHAPTER VIII - Quasars: The General Picture Archived 2008-06-19 at the Wayback Machine ; LOC 75-158894
- "The Quasi-Quasars". Time. 18 June 1965.
- SIMBAD, Object query : BSO 1, QSO B1246+377 -- Quasar
- Xaq Rzetelny (8 January 2015). "Supermassive black hole binary discovered".
- Matthew J. Graham; S. George Djorgovski; Daniel Stern; Eilat Glikman; Andrew J. Drake; Ashish A. Mahabal; Ciro Donalek; Steve Larson; Eric Christensen (25 July 2014). "A possible close supermassive black-hole binary in a quasar with optical periodicity". Nature (published 7 January 2015). 518 (7537): 74–76. arXiv:1501.01375. Bibcode:2015Natur.518...74G. doi:10.1038/nature14143. PMID 25561176.
- "X Rays from a Quasar". Time. 14 July 1967.
- Discovery News, "Primordial 'Dust Free' Monsters Lurk at the Edge of the Universe", Ian O'Neill, 18 March 2010 (accessed 6 April 2010)
- DNA India, "Astronomers discover most primitive supermassive black holes known", ANI, 19 March 2010 (accessed 6 April 2010)
- "Most primitive supermassive black holes known 'discovered'". The Times of India. Press Trust of India. 19 March 2010. Retrieved 6 April 2010.
- Jiang, Linhua; Fan, Xiaohui; Brandt, W. N; Carilli, Chris L; Egami, Eiichi; Hines, Dean C; Kurk, Jaron D; Richards, Gordon T; Shen, Yue; Strauss, Michael A; Vestergaard, Marianne; Walter, Fabian (2010). "Dust-free quasars in the early Universe". Nature. 464 (7287): 380. arXiv:1003.3432. Bibcode:2010Natur.464..380J. doi:10.1038/nature08877. PMID 20237563.
- Scientific Computing, "Fast-growing Primitive Black Holes found in Distant Quasars " Archived 26 February 2012 at the Wayback Machine (accessed 4 April 2010)
- SIMBAD, "QSO J0303-0019" (accessed 4 April 2010)
- SIMBAD, "QSO J0005-0006" (accessed 4 April 2010)
- Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature. 553 (7689): 473. arXiv:1712.01860. Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID 29211709.
- Radio astronomers detect 'baby quasar' near the edge of the visible Universe, 13:50 EST, 6 June 2008
- SIMBAD, Object query : QSO J1427+3312, QSO J1427+3312 -- Quasar
- http://www.cnn.com/2015/08/31/us/double-black-hole-nasa-hubble-feat/
- Interview ; "Maaarten Schmidt" (PDF). (556 KB) ; 11 April and 2 & 15 May 1996
- Shields, Gregory A. (June 1999). "A Brief History of Active Galactic Nuclei". Publications of the Astronomical Society of the Pacific. 111 (760): 661–678. arXiv:astro-ph/9903401. Bibcode:1999PASP..111..661S. doi:10.1086/316378.; Shields, G. "A Brief History of AGN". nedwww.ipac.caltech.edu.
- Scientific American, "Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe", John Matson, 29 June 2011
- Discovery.com Black Hole Is Most Distant Ever Found Archived 2008-06-16 at the Wayback Machine 7 June 2007
- Willott, C. J.; et al. (2007). "Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey". The Astronomical Journal. 134 (6): 2435–2450. arXiv:0706.0914. Bibcode:2007AJ....134.2435W. doi:10.1086/522962.
- CFHQS UOttawa, Canada-France High-z Quasar Survey Archived 2008-05-05 at the Wayback Machine
- CFH UHawaii, Astronomers find most distant black hole
- Bertoldi, F; et al. (2003). "High-excitation CO in a quasar host galaxy at z = 6.42". Astronomy & Astrophysics. 409 (3): L47–L50. arXiv:astro-ph/0307408. Bibcode:2003A&A...409L..47B. doi:10.1051/0004-6361:20031345.
- Beelen, A.; et al. (2006). "350 Micron Dust Emission from High Redshift Quasars". The Astrophysical Journal. 642 (2): 694–701. arXiv:astro-ph/0603121. Bibcode:2006ApJ...642..694B. doi:10.1086/500636.
- Dokuchaev, V. I; Eroshenko, Yu. N; Rubin, S. G (2007). "Origin of supermassive black holes". arXiv:0709.0070 [astro-ph].
- White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (July 2003). "Probing the Ionization State of the Universe at z > 6". The Astronomical Journal. 126 (1): 1–14. arXiv:astro-ph/0303476. Bibcode:2003AJ....126....1W. doi:10.1086/375547.
- Wang, Ran; et al. (2007). "Millimeter and Radio Observations of z~6 Quasars". The Astronomical Journal. 134 (2): 617. arXiv:0704.2053. Bibcode:2007AJ....134..617W. doi:10.1086/518867.
- Pentericci, L; et al. (2001). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv:astro-ph/0112075. Bibcode:2002AJ....123.2151P. doi:10.1086/340077.
- Haiman, Zoltán; Cen, Renyue (2002). "A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524". The Astrophysical Journal. 578 (2): 702–7. arXiv:astro-ph/0205143. Bibcode:2002ApJ...578..702H. doi:10.1086/342610.
- Farrah, D; Priddey, R; Wilman, R; Haehnelt, M; McMahon, R (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611: L13. arXiv:astro-ph/0406561. Bibcode:2004ApJ...611L..13F. doi:10.1086/423669.
- Fan, Xiaohui; et al. (December 2001). "A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6". The Astronomical Journal. 122 (6): 2833–2849. arXiv:astro-ph/0108063. Bibcode:2001AJ....122.2833F. doi:10.1086/324111.
- "Discovery Announced of Two Most Distant Objects". PennState Eberly College of Science. 5 June 2001. Archived from the original on 21 November 2007.
- SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
- SIMBAD, Object query : QSO B1425+3326 Archived 2009-09-12 at the Wayback Machine, QSO J1427+3312 -- Quasar
- Schneider, Donald P.; et al. (August 2005). "The Sloan Digital Sky Survey Quasar Catalog. III. Third Data Release". The Astronomical Journal. 130 (2): 367–380. arXiv:astro-ph/0503679. Bibcode:2005AJ....130..367S. doi:10.1086/431156.
- UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies - (Last Updated 10 February 2005) Archived 2007-06-18 at the Wayback Machine
- Iye, Masanori; et al. (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–8. arXiv:astro-ph/0609393. Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID 16971942.
- BBC News, Astronomers claim galaxy record, 11 July 2007, 17:10 GMT 18:10 UK
- New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
- BBC News, Far away stars light early cosmos, 14 March 2002, 11:38 GMT
- BBC News, Most distant galaxy detected, 25 March 2003, 14:28 GMT
- Hu, E. M.; et al. (5 March 2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal Letters. 568 (2): L75–L79. arXiv:astro-ph/0203091. Bibcode:2002ApJ...568L..75H. doi:10.1086/340424.
- Kodaira, K; et al. (2003). "The Discovery of Two Lyman α Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17. arXiv:astro-ph/0301096. Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
- "International Team of Astronomers Finds Most Distant Object". Science Journal. Vol. 17 no. 1. Eberly College of Science, PennState. Summer 2000. Archived from the original on 12 September 2009.
- Hu, Esther M.; McMahon, Richard G.; Cowie, Lennox L. (3 August 1999). "An Extremely Luminous Galaxy at z = 5.74". The Astrophysical Journal Letters. 522 (1): L9–L12. arXiv:astro-ph/9907079. Bibcode:1999ApJ...522L...9H. doi:10.1086/312205.
- PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite Archived 2007-11-21 at the Wayback Machine, Dec 2000
- SPACE.com, Most Distant Object in Universe Comes Closer, 1 December 2000
- NOAO Newsletter - NOAO Highlights - March 2000 - Number 61, The Most Distant Quasar Known
- Stern, Daniel; et al. (20 March 2002). "Chandra Detection of a Type II Quasar at z = 3.288". The Astrophysical Journal. 568 (1): 71–81. arXiv:astro-ph/0111513. Bibcode:2002ApJ...568...71S. doi:10.1086/338886.
- Stern, Daniel; Spinrad, Hyron; Eisenhardt, Peter; Bunker, Andrew J.; Dawson, Steve; Stanford, S. A.; Elston, Richard (20 April 2000). "Discovery of a Color-selected Quasar at z = 5.50". The Astrophysical Journal. 533 (2): L75–L78. arXiv:astro-ph/0002338. Bibcode:2000ApJ...533L..75S. doi:10.1086/312614. PMID 10770694.
- SDSS 98-3 Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Dec 1998
- Fan, Xiaohui; et al. (January 2001). "High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. IV. Luminosity Function from the Fall Equatorial Stripe Sample". The Astronomical Journal. 121 (1): 54–65. arXiv:astro-ph/0008123. Bibcode:2001AJ....121...54F. doi:10.1086/318033.
- SIMBAD, Object query : SDSSp J033829.31+002156.3, QSO J0338+0021 -- Quasar
- Henry Fountain (15 December 1998). "Observatory: Finding Distant Quasars". The New York Times. p. F5.
- John Noble Wilford (20 October 1988). "Peering Back in Time, Astronomers Glimpse Galaxies Aborning". The New York Times. p. F1.
- Smith, J. D; et al. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4". The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
- New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
- FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Archived 2009-09-12 at the Wayback Machine 8 December 1998
- Hook, I. M; McMahon, R. G (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.010". Monthly Notices of the Royal Astronomical Society. 294: L7. arXiv:astro-ph/9801026. Bibcode:1998MNRAS.294L...7H. doi:10.1046/j.1365-8711.1998.01368.x.
- Turner, Edwin L (1991). "Quasars and galaxy formation. I - the Z greater than 4 objects". The Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
- SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
- Cowie, Lennox L (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647: 31. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x.
- The New York Times, Peering to Edge of Time, Scientists Are Astonished, 20 November 1989
- Warren, S. J; Hewett, P. C; Osmer, P. S; Irwin, M. J (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0.
- Levshakov, S. A (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972.
- The New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, 14 January 1988
- John Noble Wilford (10 May 1988). "Astronomers Peer Deeper Into Cosmo". The New York Times. p. C1.
- SIMBAD, Object query : Q0000-26, QSO B0000-26 -- Quasar
- Schmidt, Maarten; Schneider, Donald P; Gunn, James E (1987). "PC 0910 + 5625 - an optically selected quasar with a redshift of 4.04". The Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
- SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
- Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (8 January 1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131–133. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0.; First observation of a quasar with a redshift of 4
- SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
- SIMBAD, Object query : Q1208+1011, QSO B1208+1011 -- Quasar
- NewScientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
- Orwell Astronomical Society (Ipswich) - OASI ; Archived Astronomy News Items, 1972 - 1997 Archived 2009-09-12 at the Wayback Machine
- SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 -- Quasar
- OSU Big Ear, History of the OSU Radio Observatory
- SIMBAD, Object query : OQ172, QSO B1442+101 -- Quasar
- QUASARS - THREE YEARS LATER, 1974 Archived 2009-09-12 at the Wayback Machine
- "The Edge of Night". Time. 23 April 1973.
- SIMBAD, Object query : OH471, QSO B0642+449 -- Quasar
- Warren, S J; Hewett, P C (1 August 1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095–1135. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003.
- Bahcall, John N; Oke, J. B (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". The Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi:10.1086/150762.
- Lynds, R; Wills, D (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi:10.1038/226532a0. PMID 16057373.
- SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 -- Quasar
- Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv:astro-ph/0009187. Bibcode:1999Ap&SS.269..165I. doi:10.1023/A:1017052809781.; Illingworth, G. "8. Z > 5 Galaxies". nedwww.ipac.caltech.edu.
- Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". The Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi:10.1086/180265.
- Time Magazine, A Farther-Out Quasar, 7 April 1967
- SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 -- Quasar
- Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". The Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
- Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
- SIMBAD, Object query : Q1116+12, 4C 12.39 -- Quasar
- SIMBAD, Object query : Q0106+01, 4C 01.02 -- Quasar
- "Toward the Edge of the Universe". Time Magazine. 21 May 1965.
- Malcolm S. Longair (2006). The Cosmic Century: A History of Astrophysics and Cosmology. Cambridge University Press. p. 7. ISBN 978-0-521-47436-8.
- Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". The Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
- Ivor Robinson; Alfred Schild; E. L. Schucking (eds.). "Introduction: The Discovery of Radio Galaxies and Quasars". Proceedings of the First Texas Symposium on Relativistic Astrophysics. The University of Chicago.
- Schmidt, Maarten; Matthews, Thomas A (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". The Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
- Schmidt, Maarten; Matthews, Thomas A (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". The Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
- Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". In Ivor Robinson; Alfred Schild; E.L. Schucking (eds.). Quasi-Stellar Sources and Gravitational Collapse, Proceedings of the 1st Texas Symposium on Relativistic Astrophysics. University of Chicago Press. p. 269. Bibcode:1965qssg.conf..269S.
- Schneider, Donald P; Van Gorkom, J. H; Schmidt, Maarten; Gunn, James E (1992). "Radio properties of optically selected high-redshift quasars. I - VLA observations of 22 quasars at 6 CM". The Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
- "Finding the Fastest Galaxy: 76,000 Miles per Second". Time. 10 April 1964.
- Greenstein, Jesse L; Matthews, Thomas A (1963). "Red-Shift of the Unusual Radio Source: 3C 48". Nature. 197 (4872): 1041. Bibcode:1963Natur.197.1041G. doi:10.1038/1971041a0.
- "1961 May 12 meeting of the Royal Astronomical Society". The Observatory. 81: 113–118. 1961. Bibcode:1961Obs....81..113.
- P., Varshni, Y. (March 1979). "No redshift in 3C 295". Bulletin of the American Astronomical Society. 11: 458. Bibcode:1979BAAS...11..458V.
- The Origin of Matter Part 4
- Wolf, Christian; et al. (2018). "Discovery of the most ultra-luminous QSO using Gaia, Sky Mapper and WISE". arXiv:1805.04317 [astro-ph.GA].
- Bachev, R; Strigachev, A; Semkov, E (2004). "Short-term optical variability of high-redshift QSO's". Monthly Notices of the Royal Astronomical Society. 358 (3): 774–780. arXiv:astro-ph/0412149. Bibcode:2005MNRAS.358..774B. doi:10.1111/j.1365-2966.2005.08708.x.
- Kuhn, O; Bechtold, J; Cutri, R; Elvis, M; Rieke, M (1995). "The spectral energy distribution of the z = 3 quasar: HS 1946+7658". The Astrophysical Journal. 438: 643. Bibcode:1995ApJ...438..643K. doi:10.1086/175107.
- Pâris, Isabelle; et al. (2012). "The Sloan Digital Sky Survey quasar catalog: Ninth data release". Astronomy & Astrophysics. 548: A66. arXiv:1210.5166. Bibcode:2012A&A...548A..66P. doi:10.1051/0004-6361/201220142.
- Stern, Jonathan; Hennawi, Joseph F; Pott, Jörg-Uwe (2015). "Spatially Resolving the Kinematics of the <100 μas Quasar Broad Line Region using Spectroastrometry". The Astrophysical Journal. 804: 57. arXiv:1502.07767. Bibcode:2015ApJ...804...57S. doi:10.1088/0004-637X/804/1/57.
- Eisenhardt, Peter R. M; et al. (2012). "The First Hyper-Luminous Infrared Galaxy Discovered by WISE". The Astrophysical Journal. 755 (2): 173. arXiv:1208.5517. Bibcode:2012ApJ...755..173E. doi:10.1088/0004-637X/755/2/173.
- Wu, Xue-Bing; et al. (2015). "An ultra-luminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30". Nature. 518 (7540): 512–515. arXiv:1502.07418. Bibcode:2015Natur.518..512W. doi:10.1038/nature14241. PMID 25719667.
- Stepanian, J. A.; Green, R. F.; Foltz, C. B.; Chaffee, F.; Chavushyan, V. H.; Lipovetsky, V. A.; Erastova, L. K. (December 2001). "Spectroscopy and Photometry of Stellar Objects from the Second Byurakan Survey". The Astronomical Journal. 122 (6): 3361–3382. Bibcode:2001AJ....122.3361S. doi:10.1086/324460.
- Schneider, Donald P; et al. (2010). "The Sloan Digital Sky Survey Quasar Catalog V. Seventh Data Release". The Astronomical Journal. 139 (6): 2360–2373. arXiv:1004.1167. Bibcode:2010AJ....139.2360S. doi:10.1088/0004-6256/139/6/2360.
- Schneider, Donald P.; et al. (July 2007). "The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release". The Astronomical Journal. 134 (1): 102–117. arXiv:0704.0806. Bibcode:2007AJ....134..102S. doi:10.1086/518474.
- Elvis, Martin; Matsuoka, M; Siemiginowska, A; Fiore, F; Mihara, T; Brinkmann, W (1994). "An ASCA GIS spectrum of S5 0014+813 AT z = 3.384". The Astrophysical Journal. 436: L55. Bibcode:1994ApJ...436L..55E. doi:10.1086/187631.
- Wu, Xue-Bing; et al. (2010). "A very bright i=16.44 quasar in the 'redshift desert' discovered by LAMOST". Research in Astronomy and Astrophysics. 10 (8): 737. arXiv:1005.5499. Bibcode:2010RAA....10..737W. doi:10.1088/1674-4527/10/8/003.