Hayward metric
The Hayward metric is the simplest description of a black hole which is non-singular. The metric was written down by Sean Hayward as the minimal model which is regular, static, spherically symmetric and asymptotically flat.[1] The metric is not derived from any particular alternative theory of gravity, but provides a framework to test the formation and evaporation of non-singular black holes both within general relativity and beyond. Hayward first published his metric in 2005 and numerous papers have studied it since.[2][3][4][5]
References
- Hayward, Sean A. (26 January 2006). "Formation and evaporation of non-singular black holes". Physical Review Letters. 96 (3). arXiv:gr-qc/0506126. doi:10.1103/PhysRevLett.96.031103.
- De Lorenzo, Tommaso; Pacilio, Costantino; Rovelli, Carlo; Speziale, Simone (1 April 2015). "On the Effective Metric of a Planck Star". General Relativity and Gravitation. 47 (4). arXiv:1412.6015. doi:10.1007/s10714-015-1882-8.
- Chiba, Takeshi; Kimura, Masashi (1 April 2017). "A Note on Geodesics in Hayward Metric". Progress of Theoretical and Experimental Physics. 2017 (4). arXiv:1701.04910. doi:10.1093/ptep/ptx037.
- Contreras, E.; Bargueño, P. (20 October 2018). "Scale--dependent Hayward black hole and the generalized uncertainty principle". Modern Physics Letters A. 33 (32): 1850184. arXiv:1809.00785. doi:10.1142/S0217732318501845.
- Frolov, Valeri P. (28 November 2016). "Notes on non-singular models of black holes". Physical Review D. 94 (10). arXiv:1609.01758. doi:10.1103/PhysRevD.94.104056.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.