List of largest stars
Below is a list of the largest stars currently known, ordered by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,288 mi).
Great uncertainties remain with the membership and order of the list, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or within a large range of values. Values for stellar radii vary significantly in different sources and for different observation methods.
The angular diameters of many stars can be measured directly using stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test indirect methods of finding stellar radii. Only a few useful supergiant stars can be occulted by the Moon, including Antares A (Alpha Scorpii A). Examples of eclipsing binaries are Epsilon Aurigae (Almaaz), VV Cephei, and V766 Centauri (HR 5171). Angular diameter measurements can be inconsistent because the boundary of the very tenuous atmosphere (opacity) differs depending on the wavelength of light in which the star is observed.
Caveats
Complex issues exist in determining the true radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:
- Largest stars are usually expressed in units of the solar radius (R☉), where 1.00 R☉ equals 695,700 kilometres.
- Stellar radii or diameters are usually derived only approximately using Stefan-Boltzmann law for the deduced stellar luminosity and effective surface temperature.
- Stellar distances, and their errors, for most stars, remain uncertain or poorly determined.
- Many supergiant stars have extended atmospheres, and many are embedded within opaque dust shells, making their true effective temperatures highly uncertain.
- Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
- Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.
Extragalactic large stars
In this list are some examples of more distant extragalactic stars, which may have slightly different properties and natures than the currently largest-known stars in the Milky Way:
- Some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or change their spectral types over just a few months.
- A survey of the Magellanic Clouds has catalogued many red supergiants, where many of them exceed 700 R☉ (490,000,000 km; 3.3 AU; 300,000,000 mi). Largest of these is about 1,200-1,300 R☉, though a few recent discoveries show stars reaching sizes of >1,500.[1][2]
List
Star name | Solar radii (Sun = 1) |
Method[lower-alpha 1] | Notes |
---|---|---|---|
Stephenson 2-18 | 2,150[3] | L/Teff | Located within the massive open cluster Stephenson 2, where 25 other red supergiants are also located. A calculation of the bolometric luminosity by fitting the spectral energy distribution (SED) gives the star a luminosity of nearly 440,000 L☉ with an effective temperature of 3,200 K, which corresponds to a very large but extreme radius of 2,150 R☉, which would be considerably larger, cooler and more luminous than theoretical models of the largest, coolest, and most luminous possible red supergiants |
LGGS J004520.67+414717.3 | 2,126[2] | L/Teff | Located in the Andromeda Galaxy |
MY Cephei | 2,061[4] | L/Teff | Not to be confused with Mu Cephei (see below). Older estimates have given up to 2,440 R☉ based on much cooler temperatures.[5] |
WY Velorum | 2,028[6] | AD | A symbiotic star containing a red supergiant, in the constellation of Vela |
Orbit of Saturn | 1,940-2,169 | Reported for reference | |
WOH S71 (LMC 23095) | 1,896[2] | L/Teff | Located in the Large Magellanic Cloud |
MG73 46 (MSX LMC 891) | 1,838[2] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J004539.99+415404.1 | 1,792[2] | L/Teff | Located in the Andromeda Galaxy |
WOH G64 | 1,784-2,061[7] | Located in the Large Magellanic Cloud | |
HV 888 (WOH S140) | 1,765[2] | L/Teff | Located in the Large Magellanic Cloud |
V744 Sagittarii | 1,745[8] | L/Teff | |
WOH S274 | 1,724[2] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J013250.70+304510.6 | 1,701[9] | L/Teff | An extreme yellow hypergiant located in the Triangulum Galaxy (M33) |
HV 2242 (WOH S69) | 1,645[2] | L/Teff | Located in the Large Magellanic Cloud |
NML Cygni | 1,639-2,770[10] | L/Teff | De beck et al. 2010 calculates 1,183 R☉,[11] although the quoted size was based on a more accurate measure of its distance combined with assumptions of its temperature |
SMC 78282 (PMMR 198) | 1,600[12] | L/Teff | Located in the Small Magellanic Cloud |
HV 5993 (WOH S464) | 1,531[2] | L/Teff | Located in the Large Magellanic Cloud |
Westerlund 1-26 | 1,530–1,580[13] | L/Teff | Very uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not. |
RSGC1-F01 | 1,530[4] | L/Teff | Located in the open cluster RSGC1 |
W61 8-88 (WOH S465) | 1,491[2] | L/Teff | Located in the Large Magellanic Cloud |
UCAC4 116-007944 (MSX LMC 810) | 1,468[2] | L/Teff | Located in the Large Magellanic Cloud |
WOH S281 (IRAS 05261-6614) | 1,459[2] | L/Teff | Located in the Large Magellanic Cloud |
W60 A78 (WOH S459) | 1,445[2] | L/Teff | Located in the Large Magellanic Cloud |
HV 12998 (WOH S369) | 1,443[2] | L/Teff | Located in the Large Magellanic Cloud |
W60 A72 (WOH S453) | 1,441[2] | L/Teff | Located in the Large Magellanic Cloud |
VY Canis Majoris | 1,420[14] | AD | A candidate for a star in a second red supergiant phase.[15] VY CMa has been described as the largest star in the Milky Way although galactic red supergiants above are possibly larger but they have less accurate radius estimates.[16] Older estimates originally estimated the radius of VY CMa to be above 3,000 R☉,[17] or as little as 600 R☉.[18] The 1,420 R☉ measure has a margin of error of ±120 R☉.[14] |
WOH S286 | 1,417[2] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J004428.48+415130.9 | 1,410[19] | L/Teff | Located in the Andromeda Galaxy |
RU Herculis | 1,392[20] | L/Teff | |
IRAS 05280-6910 | 1,367[7] | L/Teff | Located in the Large Magellanic Cloud |
S Persei | 1,364±6[21] | AD | A red supergiant located in the Perseus Double Cluster. Levsque et al. 2005 calculated radii of 780 R☉ and 1,230 R☉ based on K-band measurements.[22] Older estimates gave up to 2,853 R☉ based on higher luminosities.[23] |
LBV in PHL 293B | 1,348-1,463[24] | L/Teff | A disappearing luminous blue variable star located in the low metallicity galaxy PHL 293B. |
V688 Monocerotis | 1,347[25] | L/Teff | Also one of the coolest stars at 1,670 K.[25] |
RSGC1-F03 | 1,325[3] | L/Teff | Located in the open cluster RSGC1. |
PMMR 62 | 1,313[12] | L/Teff | Located in the Small Magellanic Cloud |
SMC 18136 (PMMR 37) | 1,307[12] | L/Teff | Located in the Small Magellanic Cloud |
LMC 170079 | 1,294[12] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J05294221-6857173 | 1,292[9] | L/Teff | |
Z Doradus | 1,271[12] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J004312.43+413747.1 | 1,270[19] | L/Teff | Located in the Andromeda Galaxy |
BO Crucis | 1,250[8] | L/Teff | |
LGGS J004514.91+413735.0 | 1,250[19] | L/Teff | Located in the Andromeda Galaxy |
LGGS J004428.12+415502.9 | 1,240[19] | L/Teff | Located in the Andromeda Galaxy |
RSGC1-F09 | 1,230[3] | L/Teff | Located in the open cluster RSGC1. |
SMC 5092 (PMMR 9) | 1,216[12] | L/Teff | Located in the Small Magellanic Cloud |
LGGS J004125.23+411208.9 | 1,200[19] | L/Teff | Located in the Andromeda Galaxy |
HV 2532 (WOH S287) | 1,195[12] | L/Teff | Located in the Small Magellanic Cloud |
HV 2084 (PMMR 186) | 1,187[12] | L/Teff | Located in the Small Magellanic Cloud |
LGGS J004524.97+420727.2 | 1,170[19] | L/Teff | Located in the Andromeda Galaxy |
RW Cephei | 1,158[8] | L/Teff | RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M0), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted size is just an estimate. |
W60 B90 (WOH S264) | 1,149[26]–2,555[2] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J004047.22+404445.5 | 1,140[19] | L/Teff | Located in the Andromeda Galaxy |
LGGS J004035.08+404522.3 | 1,140[19] | L/Teff | Located in the Andromeda Galaxy |
SW Cephei | 1,131[27] | L/Teff | |
LGGS J004124.80+411634.7 | 1,130[19] | L/Teff | Located in the Andromeda Galaxy |
LGGS J013233.77+302718.8 | 1,129[9] | L/Teff | Located in the Triangulum Galaxy |
HV 2781 (WOH S470) | 1,129[12] | L/Teff | Located in the Large Magellanic Cloud |
RSGC1-F02 | 1,128[4] | L/Teff | Located in the open cluster RSGC1 |
SMC 56389 (PMMR 148) | 1,128[12] | L/Teff | Located in the Small Magellanic Cloud |
VX Sagittarii | 1,120–1,550[28] | L/Teff | A pulsating variable star with a variation of over 7 magnitudes in visual brightness. |
HV 2561(LMC 141430) | 1,107[12] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J004107.11+411635.6 | 1,100[19] | L/Teff | Located in the Andromeda Galaxy |
RSGC1-F08 | 1,087[3] | L/Teff | Located in the open cluster RSGC1. |
LGGS J004031.00+404311.1 | 1,080[19] | L/Teff | Located in the Andromeda Galaxy |
SMC 49478 (PMMR 115) | 1,077[12] | L/Teff | Located in the Small Magellanic Cloud |
Trumpler 27-1 | 1,073[27] | L/Teff | Located in the massive possible open cluster Trumpler 27 |
HV 897 (WOH S161) | 1,073[12] | L/Teff | Located in the Large Magellanic Cloud |
SMC 20133 (PMMR 41) | 1,072[12] | L/Teff | Located in the Small Magellanic Cloud |
LMC 174714 | 1,072[12] | L/Teff | Located in the Large Magellanic Cloud |
LGGS J004531.13+414825.7 | 1,070[19] | L/Teff | Located in the Andromeda Galaxy |
HV 11262 (PMMR 16) | 1,067[12] | L/Teff | Located in the Small Magellanic Cloud |
Orbit of Jupiter | 1,064-1,173 | Reported for reference | |
V766 Centauri Aa (HR 5171 Aa) | 1,060–1,160[29] | L/Teff | |
SMC 25879 (PMMR 54) | 1,053[12] | L/Teff | Located in the Small Magellanic Cloud |
RSGC1-F05 | 1,047[3] | L/Teff | Located in the open cluster RSGC1. |
WX Piscium | 1,044[30] | L/Teff | |
WOH G371 (LMC 146126) | 1,043[12] | L/Teff | Located in the Large Magellanic Cloud |
WOH S327 (LMC 142202) | 1,043[12] | L/Teff | Located in the Large Magellanic Cloud |
V358 Cassiopeiae | 1,043[31] | AD | A red hypergiant star in the constellation of Cassiopeia.[20] |
LGGS J004114.18+403759.8 | 1,040[19] | L/Teff | Located in the Andromeda Galaxy |
ST Cephei | 1,037[27] | L/Teff | |
LGGS J004125.72+411212.7 | 1,020[19] | L/Teff | Located in the Andromeda Galaxy |
LGGS J004059.50+404542.6 | 1,020[19] | L/Teff | Located in the Andromeda Galaxy |
HV 986 (WOH S368) | 1,010[32] | L/Teff | Located in the Large Magellanic Cloud |
KW Sagittarii | 1,009±142[33] | AD | |
VV Cephei A | 1,000[34] | EB | VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Older estimates give up to 1,900 R☉[22] |
RW Cygni | 1,000[27] | L/Teff | |
Sextans A 10 | 995[35] | L/Teff | Located in the dwarf irregular galaxy Sextans A |
NR Vulpeculae | 980[22] | L/Teff | |
Mu Cephei (Herschel's "Garnet Star") | 972[36] | L/Teff | Prototype of the obsolete class of the Mu Cephei variables and also one of reddest stars in the night sky in terms of the B-V color index.[37] Other estimates have given only 650 R☉ based on much closer distances.[38] Margin of possible error: ±228 R☉[36] |
S Cassiopeiae | 934[39] | L/Teff | |
CL Carinae | 920[8] | L/Teff | |
CD Hydri | 920[40] | L/Teff | |
HV 2112 (PMMR 187) | 916[41] | L/Teff | Located in the Small Magellanic Cloud, most likely candidate for a Thorne-Żytkow object. |
FR Scuti | 906[8] | L/Teff | |
KU Andromedae | 905[30] | L/Teff | |
Betelgeuse (Alpha Orionis) | 887[42] | AD | Star with the third largest apparent size after R Doradus and the Sun. Another estimate gives 955±217 R☉[43] |
V341 Lacertae | 874[8] | L/Teff | |
Sextans A 5 | 870[35] | L/Teff | Located in the dwarf irregular galaxy Sextans A |
W Aquilae | 862[39] | L/Teff | A red giant star, it's size could be as low as 400, but there are 2 estimates over 700 |
RT Carinae | 861[27] | L/Teff | |
V439 Puppis | 840[20] | L/Teff | |
VLH96 A | 833[44] | L/Teff | |
V558 Normae | 832[27] | L/Teff | |
IW Hydrae | 823[30] | L/Teff | |
6 Geminorum (BU Geminorum | 821+60 −27[21] | L/Teff | |
BC Cygni | 820[27] | L/Teff | |
S Lyrae | 819[39] | L/Teff | |
DQ Puppis | 811[8] | L/Teff | |
V396 Centauri | 808[27] | L/Teff | |
R Andromedae | 805[39] | L/Teff | |
U Arietis | 801[45] | AD | |
RT Ophiuchi | 801[45] | AD | |
U Lacertae | 785[27] | L/Teff | |
HD 155737 | 767[27] | L/Teff | |
CK Carinae | 761[27] | L/Teff | |
UY Scuti | 755[27] | L/Teff | |
Outer limits of the asteroid belt | 750-900 | Reported for reference | |
AZ Cygni | 748[27] | L/Teff | |
YZ Persei | 746[27] | L/Teff | |
S Cephei | 745[25] | L/Teff | |
UU Pegasi | 742[45] | AD | |
GU Cephei | 730[6] | AD | |
AD Persei | 724[46] | L/Teff | |
V641 Cassiopeiae | 716[27] | L/Teff | |
V Camelopardalis | 716[45] | AD | |
AG Camelopardalis | 713[31] | AD | |
M33 01 | 710[47] | L/Teff | |
Sextans A 7 | 710[35] | L/Teff | Located in the dwarf irregular galaxy Sextans A |
Antares A (Alpha Scorpii A) | 707[6] (varies by 19%)[48] | AD | Antares was originally calculated to be over 850 R☉,[49][50] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.[51] |
V407 Puppis | 703[6] | AD | |
LGGS J004255.95+404857.5 | 700-785[52] | L/Teff | Located in the Andromeda Galaxy |
LGGS J003950.98+405422.5 | 700[19] | L/Teff | Located in the Andromeda Galaxy |
LMC 169754 | 700[1] | L/Teff | Located in the Large Magellanic Cloud |
LMC 65558 | 700[1] | L/Teff | Located in the Large Magellanic Cloud |
WOH S66 (LMC 20355) | 700[53] | L/Teff | Located in the Large Magellanic Cloud |
V770 Cassiopeiae | 700[6] | AD | |
The following stars with sizes below 700 solar radii are kept here for comparison | |||
V354 Cephei | 685[27]-1,520[22] | L/Teff | |
KY Cygni | 672[27]-1,420[22] | L/Teff | |
119 Tauri (CE Tauri) | 587-593[54] (-608[55]) | AD | Can be occulted by the Moon, allowing accurate determination of its apparent diameter. |
V382 Carinae (x Carinae) | 485 ± 40[56] | AD | Yellow hypergiant, one of the rarest types of a star. |
V509 Cassiopeiae | 400–900[57] | AD | Yellow hypergiant, one of the rarest types of a star. |
V1427 Aquilae | 400–450[29] | DSKE | V1427 Aquilae may be a yellow hypergiant or a much less luminous star. |
CW Leonis | 390[58]-826[11] | L/Teff | Prototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X". |
Inner limits of the asteroid belt | 380 | Reported for reference | |
AH Scorpii | 360[27] | L/Teff | AH Sco is a variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies. |
V1302 Aquilae | 357[59] | L/Teff | A yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R☉ based on a much cooler temperature.[11] |
Mira A (Omicron Ceti) | 332-402[60] | AD | Prototype Mira variable. De beck et al. 2010 calculates 541 R☉.[11] |
Pistol Star | 306[61] | AD | Blue hypergiant, among the most massive and luminous stars known. |
R Doradus | 298[62] | AD | Star with the second largest apparent size after the Sun. |
Orbit of Mars | 297-358 | Reported for reference | |
La Superba (Y Canum Venaticorum) | 289[6] | AD | Referred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars. |
Sun's red giant phase | 256[63] | At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R☉ but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[64][65] Reported for reference | |
Rho Cassiopeiae | 242[6] | AD | Yellow hypergiant, one of the rarest types of a star. |
Eta Carinae A | ~240[66] | Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R☉.[67] η Car is calculated to be between 60 R☉ and 881 R☉.[68] | |
Orbit of Earth | 215 (211-219) | Reported for reference | |
Solar System Habitable Zone | 200-520[69] (uncertain) | Reported for reference | |
Orbit of Venus | 154-157 | Reported for reference | |
Epsilon Aurigae A (Almaaz A) | 143-358[70] | AD | ε Aurigae was incorrectly claimed in 1970 as the largest star with a size between 2,000 R☉ and 3,000 R☉,[71] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system. |
Deneb (Alpha Cygni) | 99.84[6] | AD | Prototype Alpha Cygni variable. |
Peony Star | 92[72] | AD | Candidate for most luminous star in the Milky Way. |
Canopus (Alpha Carinae) | 71[73] | AD | Second brightest star in the night sky. |
Orbit of Mercury | 66-100 | Reported for reference | |
LBV 1806-20 | 46-145[74] | L/Teff | Formerly a candidate for the most luminous star in the Milky Way with 40 million L☉,[75] but the luminosity has been revised later only 2 million L☉.[76][77] |
Aldebaran (Alpha Tauri) | 43.06[6] | AD | Fourteenth brightest star in the night sky |
Polaris (Alpha Ursae Minoris) | 37.5[78] | AD | The current northern pole star. |
R136a1 | 28.8[79]-35.4[80] | AD | Also on record as the most massive and luminous star known (315 M☉ and 8.71 million L☉). |
Arcturus (Alpha Boötis) | 24.25[6] | AD | Brightest star in the northern celestial hemisphere. |
HDE 226868 | 20-22[81] | The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star. | |
Sun | 1 | The largest object in the Solar System. Reported for reference |
- Methods for calculating the radius:
- AD: radius determined from angular diameter and distance
- L/Teff: radius calculated from bolometric luminosity and effective temperature
- DSKE: radius calculated using the disk emission
- EB: radius determined from observations of the eclipsing binary
See also
References
- Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417.
- Ren, Yi; Jiang, Bi-Wei (2020-07-20). "On the Granulation and Irregular Variation of Red Supergiants". The Astrophysical Journal. 898 (1): 24. doi:10.3847/1538-4357/ab9c17. ISSN 1538-4357.
- Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65.
- Humphreys, Roberta M.; Helmel, Greta; Jones, Terry J.; Gordon, Michael S. (August 2020). "Exploring the Mass Loss Histories of the Red Supergiants". arXiv e-prints: arXiv:2008.01108.
- Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60375". Astrophysical Journal. 193: 367. Bibcode:1974ApJ...193..367F. doi:10.1086/153171.
- Cruzalèbes, P.; Petrov, R. G.; Robbe-Dubois, S.; Varga, J.; Burtscher, L.; Allouche, F.; Berio, P.; Hofmann, K. H.; Hron, J.; Jaffe, W.; Lagarde, S.; Lopez, B.; Matter, A.; Meilland, A.; Meisenheimer, K.; Millour, F.; Schertl, D. (2019). "A catalogue of stellar diameters and fluxes for mid-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 490 (3): 3158–3176. arXiv:1910.00542. Bibcode:2019MNRAS.490.3158C. doi:10.1093/mnras/stz2803.
- Steven R. Goldman; Jacco Th. van Loon (2016). "The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity". Monthly Notices of the Royal Astronomical Society. 465 (1): 403–433. arXiv:1610.05761. Bibcode:2017MNRAS.465..403G. doi:10.1093/mnras/stw2708.
- Stassun K.G.; et al. (October 2019). "The revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4). arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467.
- Maria R. Drout; Philip Massey; Georges Meynet (2012). "The yellow and red supergiants of M33". The Astrophysical Journal. 750 (2): 97. arXiv:1203.0247. doi:10.1088/0004-637X/750/2/97.
- Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry". Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587.
- De Beck, E.; Decin, L.; De Koter, A.; Justanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771.
- Dicenzo, Brooke; Levesque, Emily M. (April 2019). "Atomic Absorption Line Diagnostics for the Physical Properties of Red Supergiants". The Astronomical Journal. 157 (4). Bibcode:2019AJ....157..167D. doi:10.3847/1538-3881/ab01cb.
- Wright, N. J.; Wesson, R.; Drew, J. E.; Barentsen, G.; Barlow, M. J.; Walsh, J. R.; Zijlstra, A.; Drake, J. J.; Eisloffel, J.; Farnhill, H. J. (16 October 2013). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters. 437 (1): L1–L5. arXiv:1309.4086. Bibcode:2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127.
- Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126.
- Humphreys, Roberta M. (July 2016). "LBVs, hypergiants and impostors — the evidence for high mass loss events". Journal of Physics: Conference Series. 728: 022007. doi:10.1088/1742-6596/728/2/022007. ISSN 1742-6596.
- Alcolea, J; Bujarrabal, V; Planesas, P; Teyssier, D; Cernicharo, J; De Beck, E; Decin, L; Dominik, C; Justtanont, K; De Koter, A; Marston, A. P; Melnick, G; Menten, K. M; Neufeld, D. A; Olofsson, H; Schmidt, M; Schöier, F. L; Szczerba, R; Waters, L. B. F. M (2013). "HIFISTARSHerschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: A93. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683.
- Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G; Morel, S; Perrin, G; Porro, I. L; Schloerb, F. P; Townes, C. H (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal. 605 (1): 436–461. arXiv:astro-ph/0401363. Bibcode:2004ApJ...605..436M. doi:10.1086/382218.
- Massey, Philip; Levesque, Emily M.; Plez, Bertrand (August 2006). "Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature". The Astrophysical Journal. 646 (2): 1203–1208. doi:10.1086/505025.
- Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224.
- McDonald, I.; Zijlstra, A. A.; Boyer, M. L. (2012). "Fundamental Parameters and Infrared Excesses of Hipparcos Stars". Monthly Notices of the Royal Astronomical Society. 427 (1): 343–57. arXiv:1208.2037. Bibcode:2012MNRAS.427..343M. doi:10.1111/j.1365-2966.2012.21873.x.
- Norris, Ryan P. (2019). Seeing Stars Like Never Before: A Long-term Interferometric Imaging Survey of Red Supergiants (PDF) (PhD). Georgia State University.
- Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901.
- De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series. 72: 259. Bibcode:1988A&AS...72..259D. ISSN 0365-0138.
- Allan, Andrew; Groh, Jose; Mehner, Andrea; Smith, Nathan; Boian, Ioana; Farrell, Eoin; Andrews, Jennifer (2020-08-01). "The possible disappearance of a massive star in the low metallicity galaxy PHL 293B". Monthly Notices of the Royal Astronomical Society. 496 (2): 1902–1908. doi:10.1093/mnras/staa1629. ISSN 0035-8711.
- Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280.
- Groenewegen, Martin A. T.; Sloan, Greg C. (January 2018). "Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants". Astronomy & Astrophysics. 609: A114. doi:10.1051/0004-6361/201731089. ISSN 0004-6361.
- Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd.
- Xu, Shuangjing; Zhang, Bo; Reid, Mark J; Menten, Karl M; Zheng, Xingwu; Wang, Guangli (2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859 (1): 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6.
- van Genderen, A. M.; Lobel, A.; Nieuwenhuijzen, H.; Henry, G. W.; De Jager, C.; Blown, E.; Di Scala, G.; Van Ballegoij, E. J. (2019). "Pulsations, eruptions, and evolution of four yellow hypergiants". Astronomy and Astrophysics. 631: A48. arXiv:1910.02460. Bibcode:2019A&A...631A..48V. doi:10.1051/0004-6361/201834358. S2CID 203836020.
- Schöier, F. L; Ramstedt, S; Olofsson, H; Lindqvist, M; Bieging, J. H; Marvel, K. B (2013). "The abundance of HCN in circumstellar envelopes of AGB stars of different chemical type". Astronomy & Astrophysics. 550: A78. arXiv:1301.2129. Bibcode:2013A&A...550A..78S. doi:10.1051/0004-6361/201220400.
- Bourgés, L.; Lafrasse, S.; Mella, G.; Chesneau, O.; Bouquin, J. L.; Duvert, G.; Chelli, A.; Delfosse, X. (May 2014). "The JMMC Stellar Diameters Catalog v2 (JSDC): A New Release Based on SearchCal Improvements". Astronomical Data Analysis Software and Systems XXIII. 485: 223. ISSN 1050-3390.
- https://iopscience.iop.org/article/10.1086/520797/pdf
- Arroyo-Torres, B.; Wittkowski, M.; Marcaide, J. M.; Hauschildt, P. H. (6 June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics. 554: A76. doi:10.1051/0004-6361/201220920.
- Pollmann, E.; Bennett, P. D.; Vollmann, W.; Somogyi, P. (July 2018). "Periodic Hα Emission in the Eclipsing Binary VV Cephei". Information Bulletin on Variable Stars. Bibcode:2018IBVS.6249....1P. doi:10.22444/IBVS.6249.
- Britavskiy, N. E.; Bonanos, A. Z.; Herrero, A.; Cerviño, M.; García-Álvarez, D.; Boyer, M. L.; Masseron, T.; Mehner, A.; McQuinn, K. B. W. (November 2019). "Physical parameters of red supergiants in dwarf irregular galaxies in the Local Group". Astronomy and Astrophysics. 631. arXiv:1909.13378. Bibcode:2019A&A...631A..95B. doi:10.1051/0004-6361/201935212.
- Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (2019). "NOEMA maps the CO J = 2 − 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society. 485 (2): 2417–2430. arXiv:1903.07129. Bibcode:2019MNRAS.485.2417M. doi:10.1093/mnras/stz397.
- Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". Google Groups. Archived from the original on January 30, 2018. Retrieved January 30, 2018.
- Tsuji, Takashi (2000). "Water in Emission in the Infrared Space Observatory Spectrum of the Early M Supergiant Star μ Cephei". The Astrophysical Journal Letters. 540 (2): 99–102. arXiv:astro-ph/0008058. Bibcode:2000ApJ...540L..99T. doi:10.1086/312879.
- Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515–527. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
- Koen, Chris; Laney, Dave (January 2000). "Rapidly oscillating M giant stars?". Monthly Notices of the Royal Astronomical Society. 311 (3): 636–648. doi:10.1046/j.1365-8711.2000.03127.x. ISSN 0035-8711.
- Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
- Dolan, Michelle M.; Mathews, Grant J.; Lam, Doan Duc; Lan, Nguyen Quynh; Herczeg, Gregory J.; Dearborn, David S. P. (2017). "Evolutionary Tracks for Betelgeuse". The Astrophysical Journal. 819 (1): 7. arXiv:1406.3143. Bibcode:2016ApJ...819....7D. doi:10.3847/0004-637X/819/1/7.
- Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific. 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. arXiv:1109.4562. Bibcode:2010ASPC..425..103L.
- Natale, G.; Rea, N.; Lazzati, D.; Perna, R.; Torres, D. F.; Girart, J. M. (March 2017). "Dust Radiative Transfer Modeling of the Infrared Ring around the Magnetar SGR 1900+14". The Astrophysical Journal. 837 (1): 9. doi:10.3847/1538-4357/aa5c82. ISSN 0004-637X.
- Van Belle, G. T.; Thompson, R. R.; Creech-Eakman, M. J. (2002). "Angular Size Measurements of Mira Variable Stars at 2.2 Microns. II". The Astronomical Journal. 124 (3): 1706. arXiv:astro-ph/0210167. Bibcode:2002AJ....124.1706V. doi:10.1086/342282.
- Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J; Hofmann, K. -H; Meilland, A; Millour, F; Mohamed, S; Sanchez-Bermudez, J (2018). "The evolution of red supergiant mass-loss rates" (PDF). Monthly Notices of the Royal Astronomical Society. 475 (1): 55. Bibcode:2018MNRAS.475...55B. doi:10.1093/mnras/stx3174.
- https://www.aanda.org/articles/aa/pdf/2017/05/aa29146-16.pdf
- Mark J. Pecaut; Eric E. Mamajek & Eric J. Bubar (February 2012). "A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association". Astrophysical Journal. 746 (2): 154. arXiv:1112.1695. Bibcode:2012ApJ...746..154P. doi:10.1088/0004-637X/746/2/154.
- Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal. 145 (2): 38. Bibcode:2013AJ....145...38P. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256.
- Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics. 474 (1): 229–237. Bibcode:2007A&A...474..229B. doi:10.1051/0004-6361:20077308. ISSN 0004-6361.
- Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063.
- Massey, Philip; Silva, David R; Levesque, Emily M; Plez, Bertrand; Olsen, Knut A. G; Clayton, Geoffrey C; Meynet, Georges; Maeder, Andre (2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703: 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420.
- Van Loon, J. Th.; Groenewegen, M. A. T.; de Koter, A.; Trams, N. R.; Waters, L. B. F. M.; Zijlstra, A. A.; Whitelock, P. A.; Loup, C. (1999). "Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC". Astronomy and Astrophysics. 351 (2): 559–572. arXiv:astro-ph/9909416v1. Bibcode:1999A&A...351..559V.
- Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614 (12): A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471.
- Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory. Archived from the original on August 25, 2018. Retrieved January 4, 2019.
- Groenewegen, M. A. T. (March 2020). "Analysing the spectral energy distributions of Galactic classical Cepheids". Astronomy and Astrophysics. 635. arXiv:2002.02186. Bibcode:2020A&A...635A..33G. doi:10.1051/0004-6361/201937060.CS1 maint: date and year (link)
- Nieuwenhuijzen, H.; De Jager, C.; Kolka, I.; Israelian, G.; Lobel, A.; Zsoldos, E.; Maeder, A.; Meynet, G. (2012). "The hypergiant HR 8752 evolving through the yellow evolutionary void" (PDF). Astronomy & Astrophysics. 546: A105. Bibcode:2012A&A...546A.105N. doi:10.1051/0004-6361/201117166.
- Men'shchikov1, A. B.; Balega, Y.; Blöcker, T.; Osterbart, R.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics. 392 (3): 921–929. arXiv:astro-ph/0206410. Bibcode:2002A&A...392..921M. doi:10.1051/0004-6361:20020954.
- Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal. 697 (1): 409–419. arXiv:0903.3714. Bibcode:2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
- Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
- Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
- Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019). "Infrared Interferometric Three-dimensional Diagnosis of the Atmospheric Dynamics of the AGB Star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a.
- Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
- Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
- Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
- Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union. 5: 373–398. arXiv:0910.3158. Bibcode:2010HiA....15..373G. doi:10.1017/S1743921310009890.
- Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society. 415 (3): 2020–2024. arXiv:1010.3770. Bibcode:2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
- D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal. 553 (837): 837. Bibcode:2001ApJ...553..837H. doi:10.1086/320948.
- Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8.
- Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D.; Zhao, M.; Che, X.; Ten Brummelaar, T.A.; Farrington, C.D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P.J.; Turner, N.; Pedretti, E.; Thureau, N. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series. 220 (1): 14. arXiv:1508.01909. Bibcode:2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14.
- "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
- Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
- Cruzalebes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. Bibcode:2013MNRAS.434..437C. doi:10.1093/mnras/stt1037.
- Eikenberry, S. S.; Matthews, K.; Lavine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D. (2004). "Infrared Observations of the Candidate LBV 1806‐20 and Nearby Cluster Stars". The Astrophysical Journal. 616 (1): 506–518. arXiv:astro-ph/0404435. Bibcode:2004ApJ...616..506E. doi:10.1086/422180.
- Kennedy, Meghan. "LBV 1806-20 AB?". SolStation.com. Archived from the original on 2017-11-13. Retrieved 2017-10-28.
- Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal. 610 (2): L109–L112. arXiv:astro-ph/0406316. Bibcode:2004ApJ...610L.109F. doi:10.1086/423306.
- Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics. 538 (47): A47. arXiv:1111.6375. Bibcode:2012A&A...538A..47N. doi:10.1051/0004-6361/201118040.
- Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society. 449 (1): 1011–1017. arXiv:1502.06463. Bibcode:2015MNRAS.449.1011F. doi:10.1093/mnras/stv412.
- Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565 (27): A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
- Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M⊙ stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
- Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x Note: For radius, see Table 1 with d=2 kpc.
External links
- Giant Stars An interactive website comparing the Earth and the Sun to some of the largest known stars
- Three largest stars identified BBC News
- What is the Biggest Star in the Universe? Universe Today