List of largest cosmic structures

This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres).

An image of the massive galaxy cluster MACS J0454.1-0300.

This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The list characterizes each structure based on its longest dimension.

Note that this list refers only to coupling of matter with defined limits, and not the coupling of matter in general (as per example the cosmic microwave background, which fills the entire universe). All structures in this list are defined as to whether their presiding limits have been identified.

There are some speculations about this list:

  • The Zone of Avoidance, or the part of the sky occupied by the Milky Way, blocks out light to several structures, making their limits imprecisely identified.
  • Some structures are far too distant to be seen even with the most powerful telescopes. Some factors are included to explain the structure (like gravitational lensing and redshift data).
  • Some structures have no defined limits, or endpoints. All structures are believed to be part of the cosmic web, which is a conclusive idea. Most structures are overlapped by nearby galaxies, creating a problem of how to carefully define the structure's limit.

List of largest structures

List of the largest cosmic structures
Structure name
(year discovered)
Maximum dimension
(in light-years)
Notes
Hercules–Corona Borealis Great Wall (2014)[1]9,700,000,000[2][3][4]Discovered through gamma-ray burst mapping. Doubt has been placed on the existence of the structure.[5]
Giant GRB Ring (2015)[6]5,600,000,000[6]Discovered through gamma-ray burst mapping. Largest-known regular formation in the observable Universe.[6]
Huge-LQG (2012-2013)4,000,000,000[7][8][9]Decoupling of 73 quasars. Largest-known large quasar group and the first structure found to exceed 3 billion light-years.
U1.11 LQG (2011)2,500,000,000Involves 38 quasars. Adjacent to the Clowes-Campusano LQG.
Clowes–Campusano LQG (1991)2,000,000,000Grouping of 34 quasars. Discovered by Roger Clowes and Luis Campusano.
Sloan Great Wall (2003)1,380,000,000Discovered through the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey.
South Pole Wall (2020)1,370,000,000[10][11][12][13][14][15]The largest contiguous feature in the local volume and comparable to the Sloan Great Wall (see above) at half the distance. It is located at the celestial South Pole.
(Theoretical limit) 1,200,000,000 Structures larger than this size are incompatible with the cosmological principle according to all estimates
BOSS Great Wall (BGW) (2016)1,000,000,000Structure consisting of 4 superclusters of galaxies. The mass and volume exceeds the amount of Sloan Great Wall.[16]
Perseus–Pegasus Filament (1985)1,000,000,000This galaxy filament contains Perseus-Pisces Supercluster.
Pisces-Cetus Supercluster Complex (1987)1,000,000,000Contains the Milky Way, and is the first galaxy filament to be discovered. (The first LQG was found earlier in 1982.) A new report in 2014 confirms the Milky Way as a member of Laniakea Supercluster.
Caelum Supercluster910,000,000Caelum Supercluster is a collection of over 550,000 galaxies. It is the largest of all galaxy superclusters.
CfA2 Great Wall (1989)750,000,000Also known as the Coma Wall
Saraswati Supercluster652,000,000[17]Saraswati Supercluster consists of 43 massive galaxy clusters, which include Abell 2361 and ZWCl 2341.1+0000.
Boötes Supercluster620,000,000
Horologium Supercluster (2005)550,000,000Also known as Horologium-Reticulum Supercluster.
Laniakea Supercluster (2014)520,000,000Galaxy supercluster in which the Earth is located
Komberg–Kravtsov–Lukash LQG 11500,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Hyperion proto-supercluster (2018)489,000,000the largest and earliest known proto– supercluster
Komberg–Kravtsov–Lukash LQG 12480,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Newman LQG (U1.54)450,000,000
Komberg–Kravtsov–Lukash LQG 5430,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Tesch–Engels LQG420,000,000
Draco Supercluster410,000,000
The Great Attractor400,000,000
Shapley Supercluster400,000,000First identified by Harlow Shapley as a cloud of galaxies in 1930, it was not identified as a structure until 1989.
Komberg–Kravstov–Lukash LQG 3390,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
U1.90380,000,000
Lynx–Ursa Major Filament (LUM Filament)370,000,000
Sculptor Wall370,000,000Also known as Southern Great Wall
Pisces-Cetus Supercluster350,000,000
Komberg–Kravtsov–Lukash LQG 2350,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
z=2.38 filament around protocluster ClG J2143-4423330,000,000
Webster LQG320,000,000First LQG (Large Quasar Group) discovered[19][20]
Komberg–Kravtsov–Lukash LQG 8310,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Komberg–Kravtsov–Lukash LQG 1280,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Komberg–Kravtsov–Lukash LQG 6260,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Komberg–Kravtsov–Lukash LQG 7250,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
SCL @ 1338+27228,314,341One of most distant known superclusters.
Komberg–Kravtsov–Lukash LQG 9200,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
SSA22 Protocluster200,000,000Giant collection of Lyman-alpha blobs
Ursa Major Supercluster200,000,000
Komberg-Kravtsov-Lukash LQG 10180,000,000Discovered by Boris V. Komberg, Andrey V. Kravstov and Vladimir N. Lukash[18][19]
Ophiuchus Supercluster170,000,000
Virgo Supercluster110,000,000Part of the Laniakea Supercluster (see above). It also contains the Milky Way Galaxy, which contains the Solar System where the Earth orbits the Sun.
Reported for reference

List of largest voids

Voids are immense spaces between galaxy filaments and other large-scale structures. Technically they are not structures. They are vast spaces which contain very few, or no galaxies. They are theorized to be caused by quantum fluctuations during the early formation of the universe.

A list of the largest voids so far discovered is below. Each is ranked according to its longest dimension.

List of the largest voids
Void name/designation Maximum dimension
(in light-years)
Notes
KBC Void2,000,000,000Void containing the Milky Way galaxy and Local Group
Giant Void1,300,000,000Also known as Canes Venatici Supervoid
Tully-11 void880,000,000Catalogued by R. Brent Tully
Tully-10 void792,000,000Catalogued by R. Brent Tully
Tully-9 void746,000,000Catalogued by R. Brent Tully
B&B Abell-20 void684,000,000
B&B Abell-9 void652,000,000
Tully-7 void567,240,000Catalogued by R. Brent Tully
Tully-4 void564,000,000Catalogued by R. Brent Tully
Tully-6 void557,460,000Catalogued by R. Brent Tully
Bahcall & Soneiro 1982 void554,465,200This suspected void ranged 100 degrees across the sky, and has shown up on other surveys as several separate voids. [21]
Tully-8 void554,200,000Catalogued by R. Brent Tully
B&B Abell-21 void521,600,000
B&B Abell-28 void521,600,000
Eridanus Supervoid489,000,000
(most likely value)
A recent analysis of the Wilkinson Microwave Anisotropy Probe (WMAP) in 2007 has found an irregularity of the temperature fluctuation of the cosmic microwave background within the vicinity of the constellation Eridanus with analysis found to be 70 microkelvins cooler than the average CMB temperature. One speculation is that a void could cause the cold spot, with the possible size on the left. However, it may be as large as 1 billion light-years, close to the size of the Giant Void.
B&B Abell-4 void489,000,000
B&B Abell-15 void489,000,000
Tully-3 void489,000,000Catalogued by R. Brent Tully
1994EEDTAWSS-10 void469,440,000
Tully-1 void456,400,000Catalogued by R. Brent Tully
B&B Abell-8 void456,000,000
B&B Abell-22 void456,000,000
Tully-2 void443,360,000Catalogued by R. Brent Tully
B&B Abell-24 void423,800,000
B&B Abell-27 void423,800,000
B&B Abell-7 void391,200,000
B&B Abell-12 void391,200,000
B&B Abell-29 void391,200,000
1994EEDTAWSS-21 void378,160,000
Southern Local Supervoid365,120,000
B&B Abell-10 void358,600,000
B&B Abell-11 void358,600,000
B&B Abell-13 void358,600,000
B&B Abell-17 void358,600,000
B&B Abell-19 void358,600,000
B&B Abell-23 void358,600,000
1994EEDTAWSS-19 void342,100,000
Northern Local Supervoid339,202,240Virgo Supercluster, Coma Supercluster, Perseus-Pisces Supercluster, Ursa Major-Lynx Supercluster, Hydra-Centaurus Supercluster, Sculptor Supercluster, Pavo-Corona Australes Supercluster form a sheet between the Northern Local Supervoid and the Southern Local Supervoid. The Hercules Supercluster separates the Northern Local Void from the Boötes Void. The Perseus-Pisces Supercluster and Pegasus Supercluster form a sheet separate the Northern Local Void and Southern Local Void from the Pegasus Void.[22]
Boötes void330,000,000Also known as The Giant Nothing
1994EEDTAWSS-12 void328,000,000
SSRS1 4 void217,437,333.3
GACIRASS V0 void215,262,960
BOSSCMASS 4407 void207,001,428.5[23]
SSRS2 3 void198,302,848
Local void195,693,600One of the nearest voids known and contains 3 galaxies.
SSRS2 2 void183,299,672
SSRS2 1 void177,102,708
CMASS North 11496 void171,143,837.9[24]
IRAS 1 void166,399,560
SSRS1 3 void163,078,000
IRAS 4 void146,770,200
IRAS 3 void145,139,420
IRAS 2 void142,856,328
IRAS 7 void141,877,860
SSRS2 11 void139,920,924
IRAS 6 void135,028,584
IRAS 13 void131,440,868
Pegasus void130,462,400[25] The Perseus-Pisces Supercluster and Pegasus Supercluster form a sheet separate the Northern Local Void and Southern Local Void from the Pegasus Void.[22]
IRAS 8 void128,831,620
SSRS2 9 void127,200,840
CMASS North 15935 void126,166,925.5[26]
IRAS 9 void117,416,160
IRAS 5 void117,416,160
SSRS2 4 void116,111,536
SSRS2 5 void113,502,288
SSRS2 10 void113,502,288
IRAS 10 void109,588,416
SSRS1 1 void108,718,666.7Located just behind the galaxy concentration Eridanus-Fornax-Dorado.
BOSSCMASS 60 void105,341,864.9[27]
IRAS 11 void104,369,920
SSRS2 6 void104,369,920
IRAS 12 void102,739,140
IRAS 15 void99,151,424
SSRS1 2 void97,846,800
IRAS 14 void93,932,928
SSRS2 8 void90,671,368
SSRS2 15 void89,040,588
GACIRASS V1 void83,169,780
SSRS2 7 void83,169,780
SSRS2 12 void81,539,000
GACIRASS V3 void81,539,000
SSRS2 13 void72,080,476
SSRS2 14 void69,471,228
SSRS2 18 void68,818,916
SSRS2 16 void66,209,668
GACIRASS V2 void63,600,420
SSRS2 17 void61,969,640
CMASS North 10020 void52,067,543.84[28]
gollark: I don't have anything *against* guns, and in fact I'd probably prefer looser restrictions than the UK has for FREEDOM™ reasons, but it just... never came up and I never cared much about their existence.
gollark: * maybe I saw one, I mean.
gollark: I mean, maybe in museums, I just didn't really pay attention.
gollark: Hunting rifle no, and I may not actually have ever seen one in person, bow and arrow yes, I said so.
gollark: Also not a crossbow. Although I did fire a non-cross bow at some point.

See also

References

  1. Horvath, Istvan; Bagoly, Zsolt; Hakkila, Jon; Tóth, L. Viktor (2014). "Anomalies in the GRB spatial distribution". Proceedings of Science: 78. arXiv:1507.05528. Bibcode:2014styd.confE..78H.
  2. Horvath, Istvan; Hakkila, Jon; Bagoly, Zsolt (2014). "Possible structure in the GRB sky distribution at redshift two". Astronomy & Astrophysics. 561: id.L12. arXiv:1401.0533. Bibcode:2014A&A...561L..12H. doi:10.1051/0004-6361/201323020.
  3. Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest possible structure of the Universe, defined by Einstein in his Big Bang theory (1901)". 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143. 1311: 1104. arXiv:1311.1104. Bibcode:2013arXiv1311.1104H.
  4. Klotz, Irene (2013-11-19). "Universe's Largest Structure is a Cosmic Conundrum". discovery. Archived from the original on 2015-03-25. Retrieved 2013-11-22.
  5. Christian, Sam (2020-07-11). "Re-examining the evidence of the Hercules–Corona Borealis Great Wall". Monthly Notices of the Royal Astronomical Society. 495 (4): 4291–4296. doi:10.1093/mnras/staa1448. ISSN 0035-8711.
  6. Balazs, L.G.; Bagoly, Z.; Hakkila, J.E.; Horvath, I.; Kobori, J.; Racz, I.I.; Toth, L.V. (2015-08-05). "A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs". Monthly Notices of the Royal Astronomical Society. 452 (3): 2236–2246. arXiv:1507.00675. Bibcode:2015MNRAS.452.2236B. doi:10.1093/mnras/stv1421. Retrieved 5 August 2015.
  7. Aron, Jacob (2013). "Largest structure challenges Einstein's smooth cosmos". New Scientist. 217 (2900): 13. Bibcode:2013NewSc.217...13A. doi:10.1016/S0262-4079(13)60143-8. Retrieved 14 January 2013.
  8. "Astronomers discover the largest structure in the universe". Royal astronomical society. Archived from the original on 2013-01-14. Retrieved 2013-01-13.
  9. Clowes, Roger; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J. (2013-01-11). "A structure in the early Universe at z ∼ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 1211 (4): 6256. arXiv:1211.6256. Bibcode:2013MNRAS.429.2910C. doi:10.1093/mnras/sts497. Retrieved 14 January 2013.
  10. Pomarède, Daniel; et al. (10 July 2020). "Cosmicflows-3: The South Pole Wall". The Astrophysical Journal. 897 (2). doi:10.3847/1538-4357/ab9952. Retrieved 10 July 2020.
  11. Pomerede, D.; et al. (January 2020). "The South Pole Wall". Harvard University. Retrieved 10 July 2020.
  12. Staff (10 July 2020). "Astronomers map massive structure beyond Laniakea Supercluster". University of Hawaii. Retrieved 10 July 2020.
  13. Overbye, Dennis (10 July 2020). "Beyond the Milky Way, a Galactic Wall - Astronomers have discovered a vast assemblage of galaxies hidden behind our own, in the "zone of avoidance."". The New York Times. Retrieved 10 July 2020.
  14. Mann, Adam (10 July 2020). "Astronomers discover South Pole Wall, a gigantic structure stretching 1.4 billion light-years across". Live Science. Retrieved 10 July 2020.
  15. Starr, Michelle (14 July 2020). "A Giant 'Wall' of Galaxies Has Been Found Stretching Across The Universe". ScienceAlert.com. Retrieved 19 July 2020.
  16. H.Lietzen; E.Tempel; L. J.Liivamägi (20 March 2016). "Discovery of a massive supercluster system at z ~ 0.47". Astronomy & Astrophysics. 588: L4. arXiv:1602.08498. Bibcode:2016A&A...588L...4L. doi:10.1051/0004-6361/201628261.
  17. “Saraswati”- one of the most massive large-scale structures in the Universe discovered
  18. Komberg, Boris V.; Kravtsov, Andrey V.; Lukash, Vladimir N. (1996). "The search and investigation of the Large Groups of Quasars": 2090. arXiv:astro-ph/9602090. Bibcode:1996astro.ph..2090K. doi:10.1093/mnras/282.3.713. Cite journal requires |journal= (help)
  19. R.G.Clowes; "Large Quasar Groups - A Short Review"; 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232.; 2001; Astronomical Society of the Pacific; ISBN 1-58381-065-X ; Bibcode: 2001ASPC..232..108C
  20. Webster, Adrian (May 1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683–705. Bibcode:1982MNRAS.199..683W. doi:10.1093/mnras/199.3.683.
  21. Bahcall, N. A.; Soneira, R. M. (1982) "An approximately 300 MPC void of rich clusters of galaxies" (PDF) Astrophysical Journal, Part 1, vol. 262, Nov. 15, 1982, p. 419-423. Bibcode: 1982ApJ...262..419B doi:10.1086/160436
  22. Einasto, Jaan; Einasto, Maret; Gramann, Mirt (1989) "Structure and formation of superclusters. IX - Self-similarity of voids" (PDF) Royal Astronomical Society, Monthly Notices (ISSN 0035-8711), vol. 238, May 1, 1989, p. 155-177. Bibcode: 1989MNRAS.238..155E
  23. Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161.
  24. Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161.
  25. S.A. Pustilnik (SAO), D. Engels (Hamburg), A.Y. Kniazev (ESO, SAO), A.G. Pramskij, A.V. Ugryumov (SAO), H.-J. Hagen (Hamburg) (2005) [ "HS 2134+0400 - new very metal-poor galaxy, a representative of void population?"] arXiv:astro-ph/0508255v1 Bibcode: 2006AstL...32..228P doi:10.1134/S1063773706040025
  26. Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161.
  27. Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161.
  28. Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.