Fluoroform

Fluoroform is the chemical compound with the formula CHF3. It is one of the "haloforms", a class of compounds with the formula CHX3 (X = halogen) with C3v symmetry. Fluoroform is used in diverse applications in organic synthesis. It is not an ozone depleter but is a greenhouse gas.[1]

Fluoroform
Names
IUPAC name
Trifluoromethane
Other names
Fluoroform, Carbon trifluoride, Methyl trifluoride, Fluoryl, Freon 23, Arcton 1, HFC 23, R-23, FE-13, UN 1984
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.000.794
EC Number
  • 200-872-4
RTECS number
  • PB6900000
UNII
Properties
CHF3
Molar mass 70.01 g/mol
Appearance Colorless gas
Density 2.946 kg·m−3 (gas, 1 bar, 15 °C)
Melting point −155.2 °C (−247.4 °F; 118.0 K)
Boiling point −82.1 °C (−115.8 °F; 191.1 K)
1 g/l
Solubility in organic solvents Soluble
Vapor pressure 4.38 MPa at 20 °C
0.013 mol.kg−1.bar−1
Acidity (pKa) 25 - 28
Structure
Tetrahedral
Hazards
Main hazards Nervous system depression
S-phrases (outdated) S38
NFPA 704 (fire diamond)
Flammability code 0: Will not burn. E.g. waterHealth code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
2
0
Flash point Non-flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Synthesis

About 20M kg/y are produced industrially as both a by-product of and precursor to the manufacture of Teflon.[1] It is produced by reaction of chloroform with HF:[2]

CHCl3 + 3 HF → CHF3 + 3 HCl

It is also generated biologically in small amounts apparently by decarboxylation of trifluoroacetic acid.[3]

Historical

Fluoroform was first obtained by Maurice Meslans in the violent reaction of iodoform with dry silver fluoride in 1894.[4] The reaction was improved by Otto Ruff by substitution of silver fluoride by a mixture of mercury fluoride and calcium fluoride.[5] The exchange reaction works with iodoform and bromoform, and the exchange of the first two halogen atoms by fluorine is vigorous. By changing to a two step process, first forming a bromodifluoro methane in the reaction of antimony trifluoride with bromoform and finishing the reaction with mercury fluoride the first efficient synthesis method was found by Henne.[5]

Industrial applications

CHF3 is used in the semiconductor industry in plasma etching of silicon oxide and silicon nitride. Known as R-23 or HFC-23, it was also a useful refrigerant, sometimes as a replacement for chlorotrifluoromethane (cfc-13) and is a byproduct of its manufacture.

When used as a fire suppressant, the fluoroform carries the DuPont trade name, FE-13. CHF3 is recommended for this application because of its low toxicity, its low reactivity, and its high density. HFC-23 has been used in the past as a replacement for Halon 1301[cfc-13b1] in fire suppression systems as a total flooding gaseous fire suppression agent.

Organic chemistry

Fluoroform is weakly acidic with a pKa = 25–28 and quite inert. Attempted deprotonation results in defluorination to generate F and difluorocarbene (CF2). Some organocopper and organocadmium compounds have been developed as trifluoromethylation reagents.[6]

Fluoroform is a precursor of Ruppert's reagent CF3Si(CH3)3, which is a source of the nucleophilic CF3 anion.[7][8]

Greenhouse gas

CHF3 is a potent greenhouse gas. A ton of HFC-23 in the atmosphere has the same effect as 11,700 tons of carbon dioxide. This equivalency, also called a 100-yr global warming potential, is slightly larger at 14,800 for HFC-23.[9] The atmospheric lifetime is 270 years.[9]

HFC-23 was the most abundant HFC in the global atmosphere until around 2001, which is when the global mean concentration of HFC-134a (1,1,1,2-tetrafluoroethane), the chemical now used extensively in automobile air conditioners, surpassed those of HFC-23. Global emissions of HFC-23 have in the past been dominated by the inadvertent production and release during the manufacture of the refrigerant HCFC-22 (chlorodifluoromethane).

Substantial decreases are evident in developed or Annex 1 countries HFC-23 emissions from the 1990s to the 2000s (UNFCCC greenhouse gas emissions databases).[10] The UNFCCC Clean Development Mechanism projects have provided funding and facilitated the destruction of HFC-23 co-produced from a portion of HCFC-22 produced in developing or non-Annex 1 countries since 2003. Developing countries have become the largest producers of HCFC-22 in recent years according to data compiled by the Ozone Secretariat of the World Meteorological Organization.[11][12][13] Emissions of all HFCs are included in the UNFCCCs Kyoto Protocol. To mitigate its impact, CHF3 can be destroyed with electric plasma arc technologies or by high temperature incineration.[14]

gollark: YOUR ARCHITECTURE IS PROBABLY BAD AND UNSAFE IS A MONKEYPATCH ON TOP OF THAT!
gollark: You need it in *low-level code*, not *normal application stuff*.
gollark: Unsafe is GENERALLY ILL-ADVISED because it ignores all the benefits of Rust.
gollark: Can we ban <@593113791252660224> from Rust?
gollark: STOP USING RAW POINTERS WHYYYYYY.

References

  1. ShivaKumar Kyasa (2015). "Fluoroform (CHF3)". Synlett. 26 (13): 1911–1912. doi:10.1055/s-0034-1380924.
  2. G. Siegemund, W. Schwertfeger, A. Feiring, B. Smart, F. Behr, H. Vogel, B. McKusick (2005). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349.CS1 maint: multiple names: authors list (link)
  3. Kirschner, E., Chemical and Engineering News 1994, 8.
  4. Meslans M. M. (1894). "Recherches sur quelques fluorures organiques de la série grasse". Annales de chimie et de physique. 7 (1): 346–423.
  5. Henne A. L. (1937). "Fluoroform". Journal of the American Chemical Society. 59 (7): 1200–1202. doi:10.1021/ja01286a012.
  6. Zanardi, Alessandro; Novikov, Maxim A.; Martin, Eddy; Benet-Buchholz, Jordi; Grushin, Vladimir V. (2011-12-28). "Direct Cupration of Fluoroform". Journal of the American Chemical Society. 133 (51): 20901–20913. doi:10.1021/ja2081026. ISSN 0002-7863. PMID 22136628.
  7. Rozen, S.; Hagooly, A. "Fluoroform" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi: 10.1002/047084289X.rn00522
  8. Prakash, G. K. Surya; Jog, Parag V.; Batamack, Patrice T. D.; Olah, George A. (2012-12-07). "Taming of Fluoroform: Direct Nucleophilic Trifluoromethylation of Si, B, S, and C Centers". Science. 338 (6112): 1324–1327. Bibcode:2012Sci...338.1324P. doi:10.1126/science.1227859. ISSN 0036-8075. PMID 23224551.
  9. Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland (2007). "Changes in Atmospheric Constituents and in Radiative Forcing." (PDF). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.CS1 maint: multiple names: authors list (link)
  10. http://unfccc.int/di/FlexibleQueries.do
  11. "Archived copy". Archived from the original on 2011-07-21. Retrieved 2010-04-03.CS1 maint: archived copy as title (link)
  12. Profits on Carbon Credits Drive Output of a Harmful Gas August 8, 2012 New York Times
  13. Subsidies for a Global Warming Gas
  14. Han, Wenfeng; Li, Ying; Tang, Haodong; Liu, Huazhang (2012). "Treatment of the potent greenhouse gas, CHF3. An overview". Journal of Fluorine Chemistry. 140: 7-16. doi:10.1016/j.jfluchem.2012.04.012.CS1 maint: multiple names: authors list (link)

Literature

Additional physical properties

Property Value
Density (ρ) at -100 °C (liquid) 1.52 g/cm3
Density (ρ) at -82.1 °C (liquid) 1.431 g/cm3
Density (ρ) at -82.1 °C (gas) 4.57 kg/m3
Density (ρ) at 0 °C (gas) 2.86 kg/m3
Density (ρ) at 15 °C (gas) 2.99 kg/m3
Dipole moment 1.649 D
Critical pressure (pc) 4.816 MPa (48.16 bar)
Critical temperature (Tc) 25.7 °C (299 K)
Critical density (ρc) 7.52 mol/l
Compressibility factor (Z) 0.9913
Acentric factor (ω) 0.26414
Viscosity (η) at 25 °C 14.4 μPa.s (0.0144 cP)
Molar specific heat at constant volume (CV) 51.577 J.mol−1.K−1
Latent heat of vaporization (lb) 257.91 kJ.kg−1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.