Forest transition
Forest transition refers to a geographic theory describing a reversal or turnaround in land-use trends for a given territory from a period of net forest area loss (i.e., deforestation) to a period of net forest area gain.[1][2][3][4][5][6][7] The term "landscape turnaround" has also been used to represent a more general recovery of natural areas that is independent of biome type.[2][8]
Causes
Forest recovery resulting in net increases in forest extent can occur by means of spontaneous regeneration, active planting, or both.[9][10]
There are two main paths in reforestation, one emerging from economic development and another from forest scarcity.[10] There are many causes of transition, foremost, economic development leads to industrialisation and urbanisation, pulling the labour force away from the countryside to cities. For example, in Puerto Rico, industrial policies which subsidised manufacturing led to a transition towards urban sector manufacturing and service jobs, leading to land abandonment and forest regrowth.[11] Furthermore, changes in agricultural technology make the most productive areas more agriculturally productive, concentrating agricultural production into those areas.[10] Redistribution of labour resources from areas of low fertility to areas of greater fertility promotes regrowth in the areas experiencing depopulation.[10]
Demand for forest products, especially wood, resulting from earlier deforestation, also creates market incentives to plant trees and more effectively manage forest resources.[10] Due to forestry intensification, higher forest productivity saves remaining forests from exploitation pressures.[11] Moreover, cultural responses to losses in forest area lead to government intervention to implement policies promoting reforestation.[11]
A Kuznets curve analysis of the problem, where income leads to forest regrowth, has contradictory results, due to the complex interaction of income with many socioeconomic variables (e.g. democratisation, globalisation, etc.)[11] The factors which drive deforestation also control the forest transition, promoting urbanisation, development, changing relative agricultural and urban prices, population density, demand for forest products, land tenure systems, and trade. Transitions involve a combination of socioeconomic feedbacks from forest decline and development.[12]
Global forest transition
Studies of forest transitions have been conducted for several nations as well as sub-national regions.[13] Territories reported to have experienced forest transitions after the onset of industrialization include Bangladesh, China, Costa Rica, Cuba, Denmark,[14] Canada,[2] Dominican Republic,[15] El Salvador,[16] France,[2][17] Greece,[2] Gambia, Hungary, Ireland, Italy, Japan, Morocco, Norway, New Zealand, Portugal, Puerto Rico,[2][15][18][19] Rwanda, Scotland,[20] South Korea, Spain, Switzerland,[2][21] the United States,[2] the United Kingdom,[2] and Vietnam.[22][23] Furthermore, forest-transition dynamics have been documented for regions within Brazil,[8][24][25] Ecuador,[26] and Mexico.[27][28]
The environmental effects of these forest transitions are very variable, depending on whether deforestation of old-growth forests continue, the proportions and types of tree plantations versus natural regeneration of forests, and the location and spatial configuration of the different types of forests.[13] In southern Brazil, reforestation mainly occurred through tree plantations, replanting trees, increasing forest cover.[13] And in Honduras, a transition to coffee growing led to abandonment of low-lying regions as coffee farmers moved to high-sloped highland regions.[13]
The findings of returning forests in these widespread studies raise questions about the prospects of a worldwide forest transition, particularly given ongoing processes of forest loss in many parts of the world.[2][9][29] Optimistic predictions would have a return of some 70 million hectares of forest by 2050.[30] Yet, there are significant concerns which would dampen this enthusiasm, with local governance issues and the more structural looming shortage of productive land as human populations continue to increase.[31] So far as significant increases in agricultural productivity are possible in developing countries, current under-utilised land reserves may not require exploitation.[31]
See also
References
- Mather, A.S. 1992. The forest transition. Area 24(4): 367-379
- Walker, R. 1993. Deforestation and Economic Development. Canadian Journal of Regional Science 16(3): 481-497.
- Grainger, Alan. 1995. The forest transition: an alternative approach. Area 27(3): 242-251
- Mather, A.S. and C.L. Needle. 1998. The forest transition: a theoretical basis. Area 30(2): 117-124
- Rudel, Thomas K. 1998. Is there a forest transition? Deforestation, reforestation, and development. Rural Sociology 63(4): 533-552
- Perz, Stephen G. 2007. Grand theory and context-specificity in the study of forest dynamics: forest transition theory and other directions. Professional Geographer 59(1): 105-114
- Meyfroidt & Lambin 2011, p. 344.
- Walker, R. 2011. The scale of forest transition: Amazonia and the Atlantic forests of Brazil. Applied Geography 32(1): 12-20
- Rudel, Thomas K., Oliver T. Coomes, Emilio Moran, Frederic Achard, Arild Angelsen, Jianchu Xu, and Eric Lambin. 2005. Forest transitions: towards a global understanding of the land use change. Global Environmental Change. 15: 23-31
- Meyfroidt & Lambin 2011, p. 348.
- Meyfroidt & Lambin 2011, p. 349.
- Meyfroidt & Lambin 2011, p. 353.
- Meyfroidt & Lambin 2011, p. 350.
- Mather, A.S., C.L. Needle, and J.R. Coull. 1998. From resource crisis to sustainability: the forest transition in Denmark. Int J Sust Dev World 5(3): 182-193
- Aide, T. Mitchell and H. Ricardo Grau. 2004. Globalization, migration, and Latin American ecosystems. Science 305(5692): 1915-1916
- Hecht, Susanna B., Susan Kandel, Ileana Gomes, Nelson Cuellar, and Herman Rosa. 2006. Globalization, forest resurgence, and environmental politics in El Salvador. World Development 34(2): 308-323
- Mather, A.S., J. Fairbairn, and C.L. Needle. 1999. The course and drivers of the forest transition: the case of France. Journal of Rural Studies 15(1): 65-90
- Rudel, Thomas K., Marla Perez-Lugo, and Heather Zichal. 2000. When fields revert to forest: development and spontaneous reforestation in post-war Puerto Rico. Professional Geographer 52(3): 386-397
- Grau, H. Ricardo, T. Mitchell Aide, Jess K. Zimmerman, John R. Thomlinson, Eileen Helmer, and Xioming Zou. 2003. The ecological consequences of socioeconomic and land-use changes in postagricultural Puerto Rico. Bioscience 53(12): 1159-1168
- Mather, A.S. 2004. Forest transition theory and the reforesting of Scotland. Scottish Geographical Journal 120: 83-98
- Mather, A.S. and J. Fairbairn. 2000. From floods to reforestation: the forest transition in Switzerland. Environment and History 6(4): 399-421
- Meyfroidt, P. and Lambin, E. F. 2008. Forest transition in Vietnam and its environmental impacts. Global Change Biology 14(6): 1319-1336.
- Meyfroidt, Patrick and Eric F. Lambin. 2007. The causes of the reforestation in Vietnam. Land Use Policy, 25(2): 182-197
- Perz, Stephen G. and David L. Skole. 2003. Secondary forest expansion in the Brazilian Amazon and the refinement of forest transition theory. Society and Natural Resources 16: 277-294
- Baptista, Sandra R. and Thomas K. Rudel. 2006. A re-emerging Atlantic forest? Urbanization, industrialization and the forest transition in Santa Catarina, southern Brazil. Environmental Conservation 33(3): 195–202
- Rudel, Thomas K., Diane Bates, and Rafael Machinguiashi. 2002. A tropical forest transition? Agricultural change, out-migration, and secondary forests in the Ecuadorian Amazon. Annals of the Association of American Geographers 92(1): 87-102
- Klooster, Dan. 2003. Forest transitions in Mexico: institutions and forests in a globalized countryside. Professional Geographer 55: 227-237
- Bray, David B. and Peter Klepeis. 2005. Deforestation, forest transitions, and institutions for sustainability in southeastern Mexico, 1900-2000. Environment and History 11(2): 195–223
- Kauppi, Pekka E., Jesse H. Ausubel, Jingyun Fang, Alexander S. Mather, Roger A. Sedjo, and Paul E. Waggoner. 2006. Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences of the United States of America 103(46): 17574–17579
- Meyfroidt & Lambin 2011, p. 356.
- Meyfroidt & Lambin 2011, p. 357.
Further reading
- Meyfroidt, Patrick; Lambin, Eric F. (21 November 2011). "Global Forest Transition: Prospects for an End to Deforestation". Annual Review of Environment and Resources. 36 (1): 343–371. doi:10.1146/annurev-environ-090710-143732.CS1 maint: ref=harv (link)
Free access link: http://arjournals.annualreviews.org/eprint/DMDIR7h9j2hkf9VTaIsG/full/10.1146/annurev-environ-090710-143732