Apollonius's theorem

In geometry, Apollonius's theorem is a theorem relating the length of a median of a triangle to the lengths of its sides. It states that "the sum of the squares of any two sides of any triangle equals twice the square on half the third side, together with twice the square on the median bisecting the third side".

green/blue areas = red area
Pythagoras as a special case:
green area = red area

Specifically, in any triangle ABC, if AD is a median, then

It is a special case of Stewart's theorem. For an isosceles triangle with |AB| = |AC|, the median AD is perpendicular to BC and the theorem reduces to the Pythagorean theorem for triangle ADB (or triangle ADC). From the fact that the diagonals of a parallelogram bisect each other, the theorem is equivalent to the parallelogram law.

The theorem is named for the ancient Greek mathematician Apollonius of Perga.

Proof

Proof of Apollonius's theorem

The theorem can be proved as a special case of Stewart's theorem, or can be proved using vectors (see parallelogram law). The following is an independent proof using the law of cosines.[1]

Let the triangle have sides a, b, c with a median d drawn to side a. Let m be the length of the segments of a formed by the median, so m is half of a. Let the angles formed between a and d be θ and θ′, where θ includes b and θ′ includes c. Then θ′ is the supplement of θ and cos θ′ = −cos θ. The law of cosines for θ and θ′ states

Add the first and third equations to obtain

as required.

gollark: And having others with different configurations will help expose bugs.
gollark: Making them not break horribly is important for the stability of the main node.
gollark: <@484460801428815892> potato.
gollark: ... why
gollark: It has infinite runtime too, I think.

References

  1. Godfrey, Charles; Siddons, Arthur Warry (1908). Modern Geometry. University Press. p. 20.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.