Alcuronium chloride

Alcuronium chloride is a neuromuscular blocking (NMB) agent, alternatively referred to as a skeletal muscle relaxant. It is a semi-synthetic substance prepared from C-toxiferine I,[1] a bis-quaternary alkaloid obtained from Strychnos toxifera. C-toxiferine I itself has been tested for its pharmacological action and noted to be a very long acting neuromuscular blocking agent[2] For a formal definition of the durations of actions associated with NMB agents, see page for gantacurium. The replacement of both the N-methyl groups with N-allyl moieties yielded N,N-diallyl-bis-nortoxiferine, now recognized as alcuronium (and at one time marketed as the proprietary agent called Alloferin).

Alcuronium chloride
Clinical data
AHFS/Drugs.comInternational Drug Names
ATC code
Pharmacokinetic data
Metabolismnot metabolized
Excretion70–90% unchanged in urine 1.3ml/kg/min t1/2 2–4 hours
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
ChEBI
CompTox Dashboard (EPA)
ECHA InfoCard100.035.648
Chemical and physical data
FormulaC44H50N4O2+2
Molar mass666.910 g·mol−1
3D model (JSmol)
 NY (what is this?)  (verify)

Inclusion of the allylic functions presented an enhanced potential area of biotransformation, and thus alcuronium is observed to have a much shorter duration of neuromuscular blocking action than its parent C-toxiferine I.[3] It also has a more rapid onset of action, and is ~1.5 times as potent as tubocurarine.[4] The pharmacological action of alcuronium is readily reversed by neostigmine, and it produced little histamine release.[5] The major disadvantage of alcuronium is that it elicits a vagolytic effect produced by a selective atropine-like blockade of cardiac muscarinic receptors.[4][6][7]

Effects

  • Cardiovascular system: histamine release and blockage of the sympathetic ganglia including adrenal medulla could cause hypotension
  • Respiratory: apnea due to phrenic blockage but bronchoconstriction can occur from the histamine release
  • Central nervous system: no effect on intraoccular pressure
  • Autonomic ganglion blockade can cause decrease in gut motility

Special points

  • Duration of action prolonged in states of low potassium, calcium and protein, also in states of high magnesium and acidosis.
  • Pharmaceutically incompatible with thiopentone
  • Infusion can cause fixed dilated pupils
gollark: > 0.0000000000001 msec/$So if I donate it compiles *slower*?
gollark: Like all my ideas, yes.
gollark: Each two shirts look basically the same, but they'll look different as you go through them.
gollark: Fun idea: buy 360 shirts and put slightly different colors on each (using HSL or something) and wear one every day for a year.
gollark: They won't be happy.

See also

References

  1. Foldes FF (1954). "The Mode of Action of Quaternary Ammonium Type Neuromuscular Blocking Agents". Br. J. Anaesth. 26 (6): 394–398. doi:10.1093/bja/26.6.394. PMID 13208908.
  2. Waser PG (1950). Helv. Physiol. Pharmacol. Acta. 8 (3): 342–50. PMID 14793878.CS1 maint: untitled periodical (link)
  3. Martin-Smith M (1971), In: Ariens EJ (ed.), "Drug Design". Vol. 2. Academic Press. New York and London. pp.453-530.
  4. Speight TM, Avery GS (1972). "Pancuronium Bromide: A Review of its Pharmacological Properties and Clinical Application". Drugs. 4 (3–4): 163–226. doi:10.2165/00003495-197204030-00002. PMID 4264763.
  5. Thompson MA (1980). Br. J. Hosp. Med. 23 (2): 153–4, 163–4, 167–8 passim. PMID 6102875.CS1 maint: untitled periodical (link)
  6. Coleman AJ, Downing JW, Leary WP, Moyes DG, Styles M (1972). "The immediate cardiovascular effects of pancuronium, alcuronium and tubocurarine in man". Anaesthesia. 27 (4): 415–22. doi:10.1111/j.1365-2044.1972.tb08247.x. PMID 4264060.
  7. Hughes R, Chapple DJ (1976). "Effects of Non-Depolarizing Neuromuscular Blocking Agents on Peripheral Autonomic Mechanisms in Cats". Br. J. Anaesth. 48 (2): 59–68. doi:10.1093/bja/48.2.59. PMID 130154.

Further reading

  • Zahn K, Eckstein N, Tränkle C, Sadée W, Mohr K (2002). "Allosteric modulation of muscarinic receptor signaling: alcuronium-induced conversion of pilocarpine from an agonist into an antagonist". J Pharmacol Exp Ther. 301 (2): 720–8. doi:10.1124/jpet.301.2.720. PMID 11961078. S2CID 534003.
  • Maass A, Mohr K (1996). "Opposite effects of alcuronium on agonist and on antagonist binding to muscarinic receptors". Eur J Pharmacol. 305 (1–3): 231–4. doi:10.1016/0014-2999(96)00240-3. PMID 8813558.
  • Jakubík J, Tucek S (1994). "Protection by alcuronium of muscarinic receptors against chemical inactivation and location of the allosteric binding site for alcuronium". J Neurochem. 63 (5): 1932–40. doi:10.1046/j.1471-4159.1994.63051932.x. PMID 7931349.
  • Proska J, Tucek S (1994). "Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors". Mol Pharmacol. 45 (4): 709–17. PMID 8183250.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.