Transition metal pyridine complexes
Transition metal pyridine complexes encompas many coordination complexess that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.
Bonding
With a pKa of 5.25 for its conjugate acid, pyridine is about 15x less basic than imidazole. Pyridine is a weak pi-acceptor ligand. Trends in the M-N distances for complexes of the type MCl2(py)4]2+ reveal an anticorrelation with d-electron count.[2] Few low-valent metal complexes of pyridines are known. The role of pyridine as a Lewis base extends also to main group chemistry. Examples include sulfur trioxide pyridine complex SO3(py) and pyridine adduct of borane, BH3py.
Octahedral complexes
Owing to the relatively wide C-N-C angle, the 2,6-hydrogen atoms interfere with the adjacent ligands. Consequently, relatively few octahedral homoleptic pyridine complexes are known. These include [Ru(py)6]2+.[3] and .[4] Far more common are complexes of the type [MCl2(py)4]n+, which are invariably trans. Other common classes of complexes are the tris(pyridine) trihalides [MCl3(py)3] (M = Ti, Cr, Rh, Ir).
formula | CAS RN | density from X-ray (g/cm3) | |
---|---|---|---|
TiCl2(pyridine)4 | 131618-68-3 | 1.383[5] | |
VCl2(pyridine)4[6] | 15225-42-0 | 1.346[7] | |
CrCl2(pyridine)4.acetone | 51266-53-6 | 1.383[8] | |
MnCl2(pyridine)4 | 14638-48-3 | 1.383[5] | |
FeCl2(pyridine)4 | 15138-92-8 | 1.383[2] | |
CoCl2(pyridine)4 | 13985-87-0 | 1.383[2] | |
NiCl2(pyridine)4 | 14076-99-4 | 1.383[2] | |
[RhCl2(pyridine)4]+ | 14077-30-6 (Cl− salt) | ||
RuCl2(pyridine)4 | 16997-43-6 | 1.549[9] | |
[MoX2py)4]+ | isolated as the salt with [MoX4py2]−[10] | ||
NbCl2(pyridine)4 | 168701-43-7 | 1.528 | [11] |
Four-coordinate complexes
Four-coordinate complexes include tetrahedral and square planar derivatives. Examples of homoleptic tetrahedral complexes include [M(py)4]n+ for Mn+ = Cu+,[13] M = Ni2+,[14] Ag+.[15] Examples of homoleptic square planar complexes include the d8 cations [M(py)4]n+ for Mn+ = Pd2+,[16] Pt2+,[17] Au3+.[18]
Two-coordinate complexes
Examples include the homoleptic complexes of d10 metal centers. Examples include [M(py)2]+ (M = Cu, Ag, Au), which form colorless, diamagnetic salts.[18]
Applications and occurrence
Transition metal pyridine complexes have few practical applications, but they are widely used precursors to varioous homogeneous catalysts.[19] Crabtree's catalyst, a popular catalyst for hydrogenations, is a pyridine complex.
Unlike imidazoles, pyridine and its derivatives are uncommon ligands in nature.
References
- Shin, Yeung-gyo K.; Szalda, David J.; Brunschwig, Bruce S.; Creutz, Carol; Sutin, Norman (1997). "Electronic and Molecular Structures of Pentaammineruthenium Pyridine and Benzonitrile Complexes as a Function of Oxidation State". Inorganic Chemistry. 36 (14): 3190–3197. doi:10.1021/ic9700967. PMID 11669976.
- Long, Gary J.; Clarke, Peter J. (1978). "Crystal and molecular structures of trans-tetrakis(pyridine)dichloroiron(II), -nickel(II), and -cobalt(II) and trans-tetrakis(pyridine)dichloroiron(II) monohydrate". Inorganic Chemistry. 17 (6): 1394–1401. doi:10.1021/ic50184a002.
- Templeton, Joseph L. (1979). "Hexakis(pyridine)ruthenium(II) tetrafluoroborate. Molecular structure and spectroscopic properties". Journal of the American Chemical Society. 101 (17): 4906–4917. doi:10.1021/ja00511a020.
- Lichtenberg, Crispin; Adelhardt, Mario; Wörle, Michael; Büttner, Torsten; Meyer, Karsten; Grützmacher, Hansjörg (2015). "Mono- and Dinuclear Neutral and Cationic Iron(II) Compounds Supported by an Amidinato-diolefin Ligand: Characterization and Catalytic Application". Organometallics. 34 (12): 3079–3089. doi:10.1021/acs.organomet.5b00395.
- Wijeratne, Gayan B.; Zolnhofer, Eva M.; Fortier, Skye; Grant, Lauren N.; Carroll, Patrick J.; Chen, Chun-Hsing; Meyer, Karsten; Krzystek, J.; Ozarowski, Andrew; Jackson, Timothy A.; Mindiola, Daniel J.; Telser, Joshua (2015). "Electronic Structure and Reactivity of a Well-Defined Mononuclear Complex of Ti(II)". Inorganic Chemistry. 54 (21): 10380–10397. doi:10.1021/acs.inorgchem.5b01796. PMID 26451744.
- Edema, Jilles J. H.; Stauthamer, Walter; Van Bolhuis, Fre; Gambarotta, Sandro; Smeets, Wilberth J. J.; Spek, Anthony L. (1990). "Novel vanadium(II) amine complexes: A facile entry in the chemistry of divalent vanadium. Synthesis and characterization of mononuclear L4VCl2 [L = amine, pyridine]: X-ray structures of trans-(TMEDA)2VCl2 [TMEDA = N,N,N',N'-tetramethylethylenediamine] and trans-Mz2V(py)2 [Mz = o-C6H4CH2N(CH3)2, py = pyridine]". Inorganic Chemistry. 29 (7): 1302–1306. doi:10.1021/ic00332a003.
- D.J.Brauer, C.Kruger (1973). Cryst.Struct.Commun. 2: 421. Missing or empty
|title=
(help)CS1 maint: uses authors parameter (link) - Cotton, F.Albert; Daniels, Lee M.; Feng, Xuejun; Maloney, David J.; Murillo, Carlos A.; Zúñiga, Luis A. (1995). "Experimental and theoretical study of a paradigm Jahn-Teller molecule, all-trans-CrCl2(H2O)2(pyridine)2, and the related trans-CrCl2(pyridine)4·acetone". Inorganica Chimica Acta. 235 (1–2): 21–28. doi:10.1016/0020-1693(95)90041-4.
- Wong, W. T.; Lau, T. C. (1994). "Trans-Dichlorotetrapyridineruthenium(II)". Acta Crystallographica Section C Crystal Structure Communications. 50 (9): 1406–1407. doi:10.1107/S0108270194002088. hdl:10722/69086.
- Brenčič, J. V.; Golič, L.; Leban, I.; Rotar, R.; Sieler, J. (1996). "Synthesis oftrans,trans-[MoX2py4][MoX4py2],trans-[MoX2py4]Br3, and structural identification oftrans,trans-[MoX2py4][MoX4py2] (X = Cl, Br; py = pyridine)". Zeitschrift fuer Anorganische und Allgemeine Chemie. 622 (12): 2124–2128. doi:10.1002/zaac.19966221222.
- Araya, Miguel A.; Cotton, F. Albert; Matonic, John H.; Murillo, Carlos A. (1995). "An Efficient Reduction Process Leading to Titanium(II) and Niobium(II): Preparation and Structural Characterization of trans-MCl2(py)4 Compounds, M = Ti, Nb, and Mn". Inorganic Chemistry. 34 (22): 5424–5428. doi:10.1021/ic00126a009.
- J. C. Collins, W.W. Hess (1972). "Aldehydes from Primary Alcohols by Oxidation with Chromium Trioxide: Heptanal". 52: 5. doi:10.15227/orgsyn.052.0005. Cite journal requires
|journal=
(help) - Horvat, Gordan; Portada, Tomislav; Stilinović, Vladimir; Tomišić, Vladislav (2007). "Tetrapyridinecopper(I) hexafluoridophosphate(V)". Acta Crystallographica Section e Structure Reports Online. 63 (6): m1734. doi:10.1107/S1600536807024051.
- Liptay, G.; Wadsten, T.; Borbély-Kuszmann, A. (1986). "Characterization of [Ni(py)4]Cl2 and its thermal decomposition". Journal of Thermal Analysis. 31 (4): 845–852. doi:10.1007/BF01913555.
- Nilsson, Karin; Oskarsson, Åke; Lund, P.-A.; Shen, Quang; Weidlein, Johan; Spiridonov, V. P.; Strand, T. G. (1982). "The Crystal Structure of Tetrapyridine Copper(I) Perchlorate and Tetrapyridine Silver(I) Perchlorate at 260 K". Acta Chemica Scandinavica. 36a: 605–610. doi:10.3891/acta.chem.scand.36a-0605.
- Corbo, Robert; Georgiou, Dayne C.; Wilson, David J. D.; Dutton, Jason L. (2014). "Reactions of [PhI(pyridine)2]2+ with Model Pd and Pt II/IV Redox Couples". Inorganic Chemistry. 53 (3): 1690–1698. doi:10.1021/ic402836d. PMID 24409820.
- Wei, C. H.; Hingerty, B. E.; Busing, W. R. (1989). "Structure of tetrakis(pyridine)platinum(II) chloride trihydrate: Unconstrained anisotropic least-squares refinement of hydrogen and non-hydrogen atoms from combined X-ray–neutron diffraction data". Acta Crystallographica Section C Crystal Structure Communications. 45: 26–30. doi:10.1107/S0108270188009515.
- Corbo, Robert; Ryan, Gemma F.; Haghighatbin, Mohammad A.; Hogan, Conor F.; Wilson, David J. D.; Hulett, Mark D.; Barnard, Peter J.; Dutton, Jason L. (2016). "Access to the Parent Tetrakis(pyridine)gold(III) Trication, Facile Formation of Rare Au(III) Terminal Hydroxides, and Preliminary Studies of Biological Properties". Inorganic Chemistry. 55 (6): 2830–2839. doi:10.1021/acs.inorgchem.5b02667. PMID 26930516.
- Chirik, Paul J. (2015). "Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands". Accounts of Chemical Research. 48 (6): 1687–1695. doi:10.1021/acs.accounts.5b00134. PMID 26042837.