Schwartz TVS

In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets.

Definition

For a locally convex space X with continuous dual , X is called a Schwartz space if it satisfies any of the following equivalent conditions:[1]

  • For every closed convex balanced neighborhood U of the origin in X, there exists a neighborhood V of 0 in X such that for all scalars r > 0, V can be covered by finitely many translates of rU.
  • Every bounded subset of X is totally bounded and for every closed convex balanced neighborhood U of the origin in X, there exists a neighborhood V of 0 in X such that for all scalars r > 0, there exists a bounded subset B of X such that V B + rU.

Properties

Every Fréchet Schwartz space is a Montel space.[2]

Examples

Counter-examples

There exist Fréchet spaces that are not Schwartz spaces and there exist Schwartz spaces that are not Montel spaces.[2]

Every infinite-dimensional normed space is not a Schwartz space.[2]

gollark: A ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี ัิี
gollark: A̓̓̓
gollark: A̚̚̚
gollark: a̽̽̽
gollark: A̿̿

See also

References

  1. Khaleelulla 1982, p. 32.
  2. Khaleelulla 1982, pp. 32-63.
  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). MR 0042609.
  • Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cambridge University Press. pp. 65–75.
  • Husain, Taqdir (1978). Barrelledness in topological and ordered vector spaces. Berlin New York: Springer-Verlag. ISBN 3-540-09096-7. OCLC 4493665.CS1 maint: ref=harv (link)
  • Jarhow, Hans (1981). Locally convex spaces. Teubner. ISBN 978-3-322-90561-1.CS1 maint: ref=harv (link)
  • Khaleelulla, S. M. (July 1, 1982). Written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.CS1 maint: ref=harv (link) CS1 maint: date and year (link)
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.CS1 maint: ref=harv (link)
  • Trèves, François (August 6, 2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.CS1 maint: ref=harv (link) CS1 maint: date and year (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.