Quasibarrelled space

In functional analysis and related areas of mathematics, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds.

Definition

A subset B of a TVS X is called bornivorous if it absorbs all bounded subsets of X; that is, if for each bounded subset S of X, there exists some scalar r such that S rB. A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood of the origin.[1][2]

Properties

A locally convex Hausdorff quasibarrelled space that is sequentially complete is barrelled.[3] A locally convex Hausdorff quasibarrelled space is a Mackey space, quasi-M-barrelled, and countably quasibarrelled.[4]

A locally convex space is reflexive if and only if it is semireflexive and quasibarrelled.[2]

A locally convex quasi-barreled space that is also a 𝜎-barrelled space is a barrelled space.[2]

Characterizations

A Hausdorff TVS X is quasibarrelled if and only if every bounded closed linear operator from X into a complete metrizable TVS is continuous.[5]

  • Recall that a linear F : XY operator is called closed if its graph is a closed subset of X × Y.

For a locally convex space X with continuous dual the following are equivalent:

  • X is quasi-barrelled,
  • every bounded lower semi-continuous semi-norm on X is continuous,
  • every -bounded subset of the continuous dual space is equicontinuous.

If X is a metrizable locally convex TVS then the following are equivalent:

  1. The strong dual of X is quasibarrelled.
  2. The strong dual of X is barrelled.
  3. The strong dual of X is bornological.

Examples and sufficient conditions

Every Hausdorff barrelled space and every Hausdorff bornological space is quasibarrelled.[6] Thus, every metrizable TVS is quasibarrelled.

Note that there exist quasibarrelled spaces that are neither barrelled nor bornological.[2] There exist Mackey spaces that are not quasibarrelled.[2] There exist distinguished spaces, DF-spaces, and -barrelled spaces that are not quasibarrelled.[2]

Counter-examples

There exists a DF-space that is not quasibarrelled.[2] There exists a quasibarrelled DF-space that is not bornological.[2] There exists a quasi-barreled space that is not a 𝜎-barrelled space.[2]

See also

References

  1. Jarhow 1981, p. 222.
  2. Khaleelulla 1982, pp. 28-63.
  3. Khaleelulla 1982, p. 28.
  4. Khaleelulla 1982, pp. 35.
  5. Adasch 1978, p. 43.
  6. Adasch 1978, pp. 70-73.


  • Adasch, Norbert; Ernst, Bruno; Keim, Dieter (1978). Topological Vector Spaces: The Theory Without Convexity Conditions. Lecture Notes in Mathematics. {3834. Berlin New York: Springer-Verlag. ISBN 978-3-540-08662-8. OCLC 297140003.CS1 maint: ref=harv (link)
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.CS1 maint: ref=harv (link)
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5 [Sur certains espaces vectoriels topologiques]. Annales de l'Institut Fourier. Elements of mathematics (in French). 2. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 978-3-540-42338-6. OCLC 17499190.CS1 maint: ref=harv (link)
  • Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.CS1 maint: ref=harv (link)
  • Edwards, Robert E. (Jan 1, 1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.CS1 maint: ref=harv (link) CS1 maint: date and year (link)
  • Grothendieck, Alexander (January 1, 1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.CS1 maint: ref=harv (link) CS1 maint: date and year (link)
  • Hogbe-Nlend, Henri (1977). Bornologies and functional analysis. Amsterdam: North-Holland Publishing Co. pp. xii+144. ISBN 0-7204-0712-5. MR 0500064.
  • Husain, Taqdir (1978). Barrelledness in topological and ordered vector spaces. Berlin New York: Springer-Verlag. ISBN 3-540-09096-7. OCLC 4493665.CS1 maint: ref=harv (link)
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.CS1 maint: ref=harv (link)
  • Köthe, Gottfried (1969). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.CS1 maint: ref=harv (link)
  • Khaleelulla, S. M. (July 1, 1982). Written at Berlin Heidelberg. Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.CS1 maint: ref=harv (link) CS1 maint: date and year (link)
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.CS1 maint: ref=harv (link)
  • Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.CS1 maint: ref=harv (link)
  • Trèves, François (August 6, 2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.CS1 maint: ref=harv (link) CS1 maint: date and year (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.