SDSS J1416+1348
SDSS J1416+1348 (full designation is SDSS J141624.08+134826.7) is a nearby wide binary system of two brown dwarfs, located in constellation Boötes. The system consists of L-type component A and T-type component B.
Observation data Epoch 2003.41[1] Equinox J2000[1] | |
---|---|
Constellation | Boötes |
Right ascension | 14h 16m 24.08s[1] |
Declination | 13° 48′ 26.7″[1] |
Characteristics | |
Spectral type | sdL7[2] / T7.5p[3] |
Apparent magnitude (r) | 20.69 ± 0.04[1] / - |
Apparent magnitude (i) | 18.38 ± 0.01[1] / - |
Apparent magnitude (z) | 15.92 ± 0.01[1] / - |
Apparent magnitude (Y) | 14.255 ± 0.003[1] / 18.16 ± 0.02[3] |
Apparent magnitude (J) | 12.995 ± 0.001[4] / 17.259 ± 0.017[4] |
Apparent magnitude (H) | 12.469 ± 0.001[4] / 17.62 ± 0.02[3] |
Apparent magnitude (KS) | 12.053 ± 0.001[4] / 18.93 ± 0.17[3] |
R−I color index | 2.31 ± 0.04[3] / - |
J−H color index | 0.55 ± 0.01[3] / -0.3[4] |
J−K color index | 1.03 ± 0.03[2] / -1.7[4] |
Astrometry | |
Radial velocity (Rv) | -42.2 ± 5.1[5] km/s |
Proper motion (μ) | RA: 88.0 ± 2.8[5] mas/yr Dec.: 139.9 ± 1.3[5] mas/yr |
Parallax (π) | 109.9 ± 1.8[6] mas |
Distance | 29.7 ± 0.5 ly (9.1 ± 0.1 pc) |
Orbit[6] | |
Primary | A |
Companion | B |
Semi-major axis (a) | 104+28 −72 a.u. |
Details | |
Component A | |
Mass | ~0.072[3] M☉ |
Mass | ~75[3] MJup |
Surface gravity (log g) | 5.5[7] cgs |
Temperature | 1700[7] K |
Age | ~10[3] Gyr |
Component B | |
Mass | 0.021–0.045[8] M☉ |
Mass | 22–47[8] MJup |
Surface gravity (log g) | 5.2 ± 0.4[8] cgs |
Temperature | 650 ± 60[8] K |
Metallicity | ≤-0.3 ([M/H])[8] |
Age | 2–10[8] Gyr |
Position (relative to A) | |
Component | B |
Angular distance | 9.81″ [6] |
Observed separation (projected) | 89.3 ± 1.5 AU [6] |
Other designations | |
Component A: SDSS J141624.08+134826.7,[1][5] SDSS J1416+1348,[1] SDSS J1416+13A,[7] SDSS J1416+13,[3] SDSS 1416+13,[5] SDSS 141624,[9] 2MASS J14162408+1348263,[10] SOZ 3A,[10] WDS J14164+1348A[10] Component B: ULAS J141623.94+134836.30,[3] ULAS J141623.94+134836.3,[4] SDSS J141624.08+134826.7B,[11] ULAS J1416+1348,[8] SDSS J1416+1348B,[12] ULAS J1416+13,[3] SDSS J1416+13B,[7] SDSS 141624 b,[9] WISE J141623.94+134836.0,[13] SOZ 3B,[11] WDS J14164+1348B[11] | |
Database references | |
SIMBAD | data |
Extrasolar Planets Encyclopaedia | data |
Discovery
Component A was discovered in late 2009[note 1] from a search of Sloan Digital Sky Survey (SDSS) Data Release 7, an astronomical survey conducted at Apache Point Observatory in New Mexico, United States. It has two discovery papers: Bowler et al., 2009[1] and Schmidt et al., 2009.[5]
Component B was discovered in early 2010 from UKIDSS Large Area Survey (ULAS) Data Release 5[3] & 6,[4] an astronomical survey conducted on the United Kingdom Infrared Telescope (UKIRT) on Mauna Kea in Hawaii. It has also two discovery papers: Burningham et al., 2010[3] and Scholz, 2010.[4] Burningham et al. discovered the whole system (independently of Bowler et al. and Schmidt et al.[3]) by cross-matching the ULAS DR5 against SDSS DR7,[3] and Scholz discovered component B by inspecting the UKIDSS finding charts around already found component A.[4]
Distance
In 2012 was published the first relatively precise parallax of SDSS J1416+1348, measured at the Canada-France-Hawaii Telescope under The Hawaii Infrared Parallax Program: 109.9 ± 1.8 mas, corresponding to a distance 9.10 ± 0.15 pc (29.7 ± 0.5 ly).[6] (Although, two parallaxes with large errors was previously published by Bowler et al.[1] and Scholz[4]).
Source | Parallax, mas | Distance, pc | Distance, ly | Ref. |
---|---|---|---|---|
Bowler et al., 2009 | 107 ± 34[note 2] | 9.3+4.4 −2.3 | 30.5+14.2 −7.6 | [1] |
Bowler et al., 2009 | 8.4 ± 1.9 | 27.4 ± 6.2 | [1] | |
Schmidt et al., 2009 | 8.0 ± 1.6 | 26.1 ± 5.2 | [5] | |
Burningham et al., 2010 | 5–15 | 16–49 | [3] | |
Scholz, 2010 | 7.9 ± 1.7 | 25.8 ± 5.5 | [4] | |
Burgasser et al., 2010 | 10.6+3.0 −2.8 | 34.6+9.8 −9.1 | [8] | |
Cushing et al., 2010 | 9.7 ± 0.1[note 3] | 31.6 ± 0.3[note 3] | [7] | |
The Hawaii Infrared Parallax Program (Dupuy & Liu, 2012) | 109.9 ± 1.8 | 9.10 ± 0.15 | 29.7 ± 0.5 | [6] |
Non-trigonometric distance estimates are marked in italic. The best estimate is marked in bold.
Space motion
SDSS J1416+1348 has proper motion 165 mas·yr−1 with position angle 32 degrees, indicating motion in north-east direction on the sky. Corresponding right ascension and declination components of proper motion are 88.0 ± 2.8 mas/yr and 139.9 ± 1.3 mas/yr, respectively.[5] At distance 29.7 ly (assuming parallax 109.0 ± 1.8 mas),[6] corresponding tangential velocity is 7.1 km/s. Radial velocity of SDSS J1416+1348 is -42.2 ± 5.1 km/s.[5] (Negative radial velocity value indicates that SDSS J1416+1348 is now approaching to us). Total velocity of SDSS J1416+1348 relatively to Solar system is 42.8 km/s.
SDSS J1416+1348 space motions estimates
Source | μ, mas/yr | P. A., ° | μRA, mas/yr | μDEC, mas/yr | Vtan, km/s[note 4] | Vr, km/s | Ref. |
---|---|---|---|---|---|---|---|
Bowler et al., 2009 | 151 ± 8 | 33 ± 4 | 82 | 127 | 6.5 | –38 ± 10 | [1] |
Schmidt et al., 2009 | 165 | 32 | 88.0 ± 2.8 | 139.9 ± 1.3 | 7.1 | -42.2 ± 5.1 | [5] |
Scholz, 2010 | 163 | 32 | 86.2 ± 2.6 | 138.8 ± 2.6 | 7.1 | [4] | |
SIMBAD | 165 | 32 | 88 ± 3 | 140 ± 2 | 7.1 | -87 ± 33 | [10] |
Dupuy & Liu, 2012 | 161.3 ± 2.8 | 36.1 ± 1.2 | 95.1 ± 3.0 | 130.3 ± 3.0 | 7.1 | [6] |
The most accurate estimates are marked in bold.
Space motion of SDSS J1416+1348 indicates that it is member of Galactic thin disk population.[1][4][5]
Solar encounter
Since SDSS J1416+1348 moves much faster in radial direction than in tangential direction, and radial velocity is negative, this brown dwarf system should pass Solar system in future at much smaller distance, than today's distance. Proper motion and radial velocity values from Schmidt et al., 2009 and parallax from Dupuy & Liu, 2012, assuming motion with constant velocity along straight line, yield minimal distance 4.9 ly circa year 207100.
Solar encounter chronology, assuming motion with constant velocity in a straight line relatively Solar system:[note 5]
Date | Distance, ly | Constellation | Note |
---|---|---|---|
759300 BC | 137.96 | Virgo/Boötes | transition to constellation Boötes |
493000 BC | 100 | Boötes | approach to a distance of 100 ly |
141600 BC | 50 | Boötes | approach to a distance of 50 ly |
300 BC | 30 | Boötes | approach to a distance of 30 ly |
2000 | 29.68 | Boötes | near present time |
71300 | 20 | Boötes | approach to a distance of 20 ly |
107900 | 15 | Boötes | approach to a distance of 15 ly |
146200 | 10 | Boötes | approach to a distance of 10 ly |
162900 | 8.01 | Boötes/Corona Borealis | transition to constellation Corona Borealis |
168000 | 7.46 | Corona Borealis/Boötes | transition to constellation Boötes |
170600 | 7.18 | Boötes/Hercules | transition to constellation Hercules |
186500 | 5.76 | Hercules/Draco | transition to constellation Draco |
202000 | 5 | Draco | approach to a distance of 5 ly |
203600 | 4.97 | Draco/Cygnus | transition to constellation Cygnus |
207100 | 4.95 | Cygnus | minimal distance |
207600 | 4.95 | Cygnus/Cepheus | transition to constellation Cepheus |
212200 | 5 | Cepheus | removal to a distance of 5 ly |
212800 | 5.01 | Cepheus/Cygnus | transition to constellation Cygnus |
215300 | 5.08 | Cygnus /Cepheus | transition to constellation Cepheus |
215600 | 5.09 | Cepheus/Lacerta | transition to constellation Lacerta |
222500 | 5.41 | Lacerta/Andromeda | transition to constellation Andromeda |
262300 | 9.3 | Andromeda/Pisces | transition to constellation Pisces |
268000 | 10 | Pisces | removal to a distance of 10 ly |
306400 | 15 | Pisces | removal to a distance of 15 ly |
343000 | 20 | Pisces | removal to a distance of 20 ly |
410500 | 29.44 | Pisces/Cetus | transition to constellation Cetus |
414500 | 30 | Cetus | removal to a distance of 30 ly |
507000 | 43.07 | Cetus | transition to southern hemisphere |
555900 | 50 | Cetus | removal to a distance of 50 ly |
907200 | 100 | Cetus | removal to a distance of 100 ly |
System's properties
SDSS J1416+1348 is an old system (age estimates: >0.8 Gyr,[5] ~10 Gyr,[3] ~5 Gyr,[4] 2–10 Gyr,[8] >3.2 Gyr[7]), and, probably, possesses low metallicity.[3] Its two components are separated at angular distance 9.81 arcsec, corresponding to a projected separation 89.3 ± 1.5 a. u.[6] The system's orbit semi-major axis estimate is 104+28
−72 a. u.[6]
Component A
The primary (brighter) component (SDSS J141624.08+134826.7 is mainly its designation; also known as SDSS J1416+13A) is a brown dwarf of spectral type sdL7,[2] or L6,[1][4][6] or L5,[5] or d/sdL7.[3] It has unusually blue near-infrared J−KS color.[3][4][5][8] According to Cushing et al. 2010, its peculiar spectrum is primarily a result of thin condensate clouds, and also vertical mixing occurs in its atmosphere.[7] However, in Burgasser et al., 2010 it was suggested that its (as well as component's B) peculiarities arise from age or metallicity, rather than cloud properties alone (since both A and B components have common peculiarities).[8]
Component B
The secondary (fainter) component (ULAS J141623.94+134836.3, abbreviated to ULAS J1416+1348, also known as SDSS J1416+13B) is a brown dwarf of spectral type T7.5,[8][13][14] or T7.5p.[3][6] It has unusually extremely blue near-infrared color H−K,[3] very red optical-to-near-infrared color (z−Y > +2.3 and z−J > +3.1),[4] and extremely red color H−[4.5] = 4.86 ± 0.04[3] (it was suggested, that the latter may be explained by presence of a cooler unresolved companion to SDSS J1416+13B).[3] Also, its spectrum indicates high surface gravity and/or subsolar metallicity.[8]
See also
Notes
- Date of arXiv preprint. The articles was published in journals in early 2010.
- Relative parallax.
- The error does not include any errors in temperature and surface gravity and therefore is actually larger.
- Assuming parallax 109.9 ± 1.8 mas.
- Actually, galactic orbits may be considered as approximately straight lines only on a scale much smaller than theirs sizes.
References
- Bowler, Brendan P.; Liu, Michael C.; Dupuy, Trent J. (2010). "SDSS J141624.08+134826.7: A Nearby Blue L Dwarf From the Sloan Digital Sky Survey". The Astrophysical Journal. 710 (1): 45–50. arXiv:0912.3796. Bibcode:2010ApJ...710...45B. doi:10.1088/0004-637X/710/1/45.
- Kirkpatrick, J. Davy; Looper, Dagny L.; Burgasser, Adam J.; Schurr, Steven D.; Cutri, Roc M.; Cushing, Michael C.; et al. (2010). "Discoveries from a Near-infrared Proper Motion Survey Using Multi-epoch Two Micron All-Sky Survey Data" (PDF). The Astrophysical Journal Supplement. 190 (1): 100–146. arXiv:1008.3591. Bibcode:2010ApJS..190..100K. doi:10.1088/0067-0049/190/1/100.
- Burningham, Ben; Leggett, S. K.; Lucas, P. W.; Pinfield, D. J.; Smart, R. L.; Day-Jones, A. C.; et al. (2010). "The discovery of a very cool binary system". Monthly Notices of the Royal Astronomical Society. 404 (4): 1952–1961. arXiv:1001.4393. Bibcode:2010MNRAS.404.1952B. doi:10.1111/j.1365-2966.2010.16411.x.
- Scholz, R.-D. (2010). "ULAS J141623.94+134836.3 - a faint common proper motion companion of a nearby L dwarf. Serendipitous discovery of a cool brown dwarf in UKIDSS DR6". Astronomy and Astrophysics. 510: L8. arXiv:1001.2743. Bibcode:2010A&A...510L...8S. doi:10.1051/0004-6361/201014078.
- Schmidt, Sarah J.; West, Andrew A.; Burgasser, Adam J.; Bochanski, John J.; Hawley, Suzanne L. (2010). "Discovery of an Unusually Blue L Dwarf Within 10 pc of the Sun". The Astronomical Journal. 139 (3): 1045–1050. arXiv:0912.3565. Bibcode:2010AJ....139.1045S. doi:10.1088/0004-6256/139/3/1045.
- Dupuy, Trent J.; Liu, Michael C. (2012). "The Hawaii Infrared Parallax Program. I. Ultracool Binaries and the L/T Transition". arXiv:1201.2465v1 [astro-ph.SR].
- Cushing, Michael C.; Saumon, D.; Marley, Mark S. (2010). "SDSS J141624.08+134826.7: Blue L dwarfs and Non-equilibrium Chemistry". The Astronomical Journal. 140 (5): 1428–1432. arXiv:1009.2802. Bibcode:2010AJ....140.1428C. doi:10.1088/0004-6256/140/5/1428.
- Burgasser, Adam J.; Looper, Dagny; Rayner, John T. (2010). "ULAS J141623.94+134836.3: A Blue T Dwarf Companion to a Blue L Dwarf". The Astronomical Journal. 139 (6): 2448–2454. arXiv:1002.0645. Bibcode:2010AJ....139.2448B. doi:10.1088/0004-6256/139/6/2448.
- Schneider, Jean. "Star : SDSS 141624". Extrasolar Planets Encyclopaedia. CNRS/LUTH - Paris Observatory. Retrieved 2012-05-19.
- "2MASS J14162408+1348263 -- Star". SIMBAD. Centre de Données astronomiques de Strasbourg. Retrieved 2012-05-19.
- "ULAS J141623.94+134836.3 -- Brown Dwarf (M<0.08solMass)". SIMBAD. Centre de Données astronomiques de Strasbourg. Retrieved 2012-05-19.
- Burgasser, Adam J.; Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Griffith, Roger L.; Looper, Dagny L.; et al. (2011). "Fire Spectroscopy of Five Late-type T Dwarfs Discovered with the Wide-field Infrared Survey Explorer". The Astrophysical Journal. 735 (2): 116. arXiv:1104.2537. Bibcode:2011ApJ...735..116B. doi:10.1088/0004-637X/735/2/116.
- Kirkpatrick, J. Davy; Gelino, Christopher R.; Cushing, Michael C.; Mace, Gregory N.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; Wright, Edward L.; Eisenhardt, Peter R.; McLean, Ian S.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme (2012). "Further Defining Spectral Type "Y" and Exploring the Low-mass End of the Field Brown Dwarf Mass Function". The Astrophysical Journal. 753: 156. arXiv:1205.2122. Bibcode:2012ApJ...753..156K. doi:10.1088/0004-637X/753/2/156.
- Kirkpatrick, J. Davy; Cushing, Michael C.; Gelino, Christopher R.; Griffith, Roger L.; Skrutskie, Michael F.; Marsh, Kenneth A.; et al. (2011). "The First Hundred Brown Dwarfs Discovered by the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal Supplement. 197 (2): 19. arXiv:1108.4677. Bibcode:2011ApJS..197...19K. doi:10.1088/0067-0049/197/2/19.