Negligible senescence
Negligible senescence is a term coined by biogerontologist Caleb Finch to denote organisms that do not exhibit evidence of biological aging (senescence), such as measurable reductions in their reproductive capability, measurable functional decline, or rising death rates with age.[1] There are many species where scientists have seen no increase in mortality after maturity.[1] This may mean that the lifespan of the organism is so long that researchers' subjects have not yet lived up to the time when a measure of the species' longevity can be made. Turtles, for example, were once thought to lack senescence, but more extensive observations have found evidence of decreasing fitness with age.[2]
Study of negligibly senescent animals may provide clues that lead to better understanding of the aging process and influence theories of aging.[1][3] The phenomenon of negligible senescence in some animals is a traditional argument for attempting to achieve similar negligible senescence in humans by technological means.
There are also organisms that exhibit negative senescence, whereby mortality chronologically decreases as the organism ages, for all or part of the life cycle, in disagreement with the Gompertz–Makeham law of mortality[4] (see also Late-life mortality deceleration). Furthermore, there are species that have been observed to regress to a larval state and regrow into adults multiple times, such as Turritopsis dohrnii.[5]
Studies have indicated a connection between phenomena related to negligible senescence and the general stability of an organism's genome over its lifetime.[6]
In vertebrates
Some fish, such as some varieties of sturgeon and rougheye rockfish, and some tortoises and turtles[7] are thought to be negligibly senescent, although recent research on turtles has uncovered evidence of senescence in the wild.[2] The age of a captured fish specimen can be measured by examining growth patterns similar to tree rings on the otoliths (parts of motion-sensing organs).[8]
In 2018, naked mole-rats were identified as the first mammal to defy the Gompertz–Makeham law of mortality, and achieve negligible senescence. It has been speculated however that this may be simply a "time-stretching" effect primarily due to their very slow (and cold-blooded and hypoxic) metabolism.[9][10][11]
In plants
In plants, aspen trees are one example of biological immortality. Each individual tree can live for 40–150 years above ground, but the root system of the clonal colony is long-lived. In some cases, this is for thousands of years, sending up new trunks as the older trunks die off above ground. One such colony in Utah, given the nickname of "Pando", is estimated to be 80,000 years old, making it possibly the oldest living colony of aspens.[12]
The world's oldest known living non-clonal organism was the Methuselah tree of the species Pinus longaeva, the bristlecone pine, growing high in the White Mountains of Inyo County in eastern California, aged 4851–4852 years.[13] This record was superseded in 2012 by another Great Basin bristlecone pine located in the same region as Methuselah, and was estimated to be 5062 years old. The tree was sampled by Edmund Schulman and dated by Tom Harlan.[14]
Gingko trees in China resist aging by extensive gene expression associated with adaptable defense mechanisms that collectively contribute to longevity.[15]
In bacteria
Among bacteria, individual organisms are vulnerable and can easily die, but on the level of the colony, bacteria can live indefinitely. The two daughter bacteria resulting from cell division of a parent bacterium can be regarded as unique individuals or as members of a biologically "immortal" colony.[16] The two daughter cells can be regarded as "rejuvenated" copies of the parent cell because damaged macromolecules have been split between the two cells and diluted.[17] See asexual reproduction.
Maximum life span
Some examples of maximum observed life span of animals thought to be negligibly senescent are:
Rougheye rockfish | 205 years[18][19] |
Aldabra giant tortoise | 255 years |
Lobsters | 100+ years (presumed)[20] |
Hydras | Observed to be biologically immortal[21] |
Sea anemones | 60–80 years (generally)[22] |
Freshwater pearl mussel | 210–250 years[23][24] |
Ocean Quahog clam | 507 years[25] |
Greenland Shark | 400 years[26] |
Cryptobiosis
Some rare organisms, such as tardigrades, usually have short lifespans, but are able to survive for thousands of years—and, perhaps, indefinitely—if they enter into the state of cryptobiosis, whereby their metabolism is reversibly suspended. It is hypothesized by advocates of cryonics that the human central nervous system can be similarly put into a state of suspended animation shortly before brain death to be revived at a future point in the technological development of humankind when such operation would be possible.
See also
- Biological immortality
- DNA damage theory of aging
- Indefinite lifespan
- Maximum lifespan
- Strategies for Engineered Negligible Senescence
References
- Finch, Caleb (1994). "Negligible Senescence". Longevity, Senescence and the Genome. Chicago, IL: . University of Chicago Press. pp. 206–247.
- Warner, Daniel A.; Miller, David A. W.; Bronikowski, Anne M.; Janzen, Fredric J. (2016-06-07). "Decades of field data reveal that turtles senesce in the wild". Proceedings of the National Academy of Sciences. 113 (23): 6502–6507. doi:10.1073/pnas.1600035113. ISSN 0027-8424. PMC 4988574. PMID 27140634.
- Guerin, J (2004). "Emerging area of aging research: long-lived animals with "negligible senescence"". Ann N Y Acad Sci. 1019: 518–20. doi:10.1196/annals.1297.096. PMID 15247078.
- Ainsworth, C; Lepage, M (2007). "Evolution's greatest mistakes". New Scientist. 195 (2616): 36–39. doi:10.1016/S0262-4079(07)62033-8.
- "Cheating Death: The Immortal Life Cycle of Turritopsis". 8e.devbio.com. Archived from the original on 2010-04-02. Retrieved 2010-03-17.
- Kogan, Valeria; Molodtcov, Ivan; Menshikov, Leonid I.; Shmookler Reis, Robert J.; Fedichev, Peter (2015). "Stability analysis of a model gene network links aging, stress resistance, and negligible senescence". Scientific Reports. 5: 13589. doi:10.1038/srep13589. PMC 4551969. PMID 26316217.
- Miller, J (2001). "Escaping senescence: demographic data from the three-toed box turtle (Terrapene carolina triunguis)"". Exp Gerontol. 36 (4–6): 829–32. doi:10.1016/s0531-5565(00)00243-6. PMID 11295516.
- Bennett, J (1882). "Confirmation on longevity in Sebastes diploproa (pisces Scorpaenidae) from 210Pb/226Ra measurements in otoliths". Maritime Biology. 71 (2): 209–215. doi:10.1007/bf00394632.
- Ruby, J Graham; Smith, Megan; Buffenstein, Rochelle (2018-01-24). Rose, Michael (ed.). "Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age". eLife. 7: e31157. doi:10.7554/eLife.31157. ISSN 2050-084X. PMC 5783610. PMID 29364116.
- "Google's Calico Labs announces discovery of a "non-aging mammal." | | LEAF". Retrieved 2019-02-28.
- Beltrán-Sánchez, Hiram; Finch, Caleb (2018-01-24). "Age is just a number". eLife. 7: e34427. doi:10.7554/eLife.34427. ISSN 2050-084X. PMC 5783609. PMID 29364114.
- Quaking Aspen by the Bryce Canyon National Park Service.
- "Pinus longaeva". Gymnosperm Database. March 15, 2007. Retrieved 2008-06-20.
- Brown, Peter M (2012). "OLDLIST, a database of old trees". Rocky Mountain Tree-Ring Research, Inc. Retrieved 2017-11-29.
- Wang, Li; Cui, Jiawen; Jin, Biao; Zhao, Jianguo; Xu, Huimin; Lu, Zhaogeng; Li, Weixing; Li, Xiaoxia; Li, Linling; Liang, Eryuan; Rao, Xiaolan; Wang, Shufang; Fu, Chunxiang; Cao, Fuliang; Dixon, Richard A.; Lin, Jinxing (2020-01-13). "Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees". Proceedings of the National Academy of Sciences. 117 (4): 2201–2210. doi:10.1073/pnas.1916548117. ISSN 0027-8424. PMC 6995005. PMID 31932448.
- Chao, Lin; Guttman, David S. (26 August 2010). "A Model for Damage Load and Its Implications for the Evolution of Bacterial Aging". PLOS Genetics. 6 (8): e1001076. doi:10.1371/journal.pgen.1001076. PMC 2928801. PMID 20865171.
- Rang, Camilla U.; Peng, Annie Y.; Chao, Lin (8 November 2011). "Temporal Dynamics of Bacterial Aging and Rejuvenation". Current Biology. 21 (21): 1813–1816. doi:10.1016/j.cub.2011.09.018. PMID 22036179.
- Munk, K (2001). "Maximum Ages of Groundfishes in Waters off Alaska and British Columbia and Considerations of Age Determination". Alaska Fishery Research Bulletin. 8: 1.
- Cailliet, G.M.; Andrews, A.H.; Burton, E.J.; Watters, D.L.; Kline, D.E.; Ferry-Graham, L.A. (2001). "Age determination and validation studies of marine fishes: do deep-dwellers live longer?"". Exp. Gerontol. 36 (4–6): 739–764. doi:10.1016/s0531-5565(00)00239-4. PMID 11295512.
- "140-year-old lobster's tale has a happy ending". Associated Press. January 10, 2009.
- Martínez, Daniel E (1998). "Mortality patterns suggest lack of senescence in hydras" (PDF). Experimental Gerontology. 33 (3): 217–225. CiteSeerX 10.1.1.500.9508. doi:10.1016/s0531-5565(97)00113-7. PMID 9615920.
- "Fact Files: Sea anemone". BBC Science and Nature. Archived from the original on 2009-07-18. Retrieved 2009-10-01.
- Ziuganov, V., San Miguel, E., Neves, R.J., Longa, A., Fernandez, C., Amaro, R., Beletsky, V., Popkovitch, E., Kaliuzhin, S., Johnson, T. (2000). "Life span variation of the freshwater pearlshell: a model species for testing longevity mechanisms in animals". Ambio. ХХIX (2): 102–105. doi:10.1579/0044-7447-29.2.102.CS1 maint: multiple names: authors list (link)
- Зюганов В.В. (2004). "Арктические долгоживущие и южные короткоживущие моллюски жемчужницы как модель для изучения основ долголетия". Успехи геронтол. 14: 21–31.
- Munro, D.; Blier, P.U. (2012). "The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes". Aging Cell. 11 (5): 845–55. doi:10.1111/j.1474-9726.2012.00847.x. PMID 22708840.
- Pennisi, Elizabeth (11 August 2016). "Greenland Shark May Live 400 Years, Smashing Longevity Record". Science Magazine.